symmetry x^3+2x^2-x-2
|
symmetry\:x^{3}+2x^{2}-x-2
|
domain of f(x)=sqrt(x-17)
|
domain\:f(x)=\sqrt{x-17}
|
y=arccoth(sqrt(1-x^2))
|
y=\arccoth(\sqrt{1-x^{2}})
|
y=(x-5)/(2x-4)
|
y=\frac{x-5}{2x-4}
|
f(x)=-3(x+4)^2+1
|
f(x)=-3(x+4)^{2}+1
|
f(θ)=(tan(θ)+sin(θ))/(csc(θ)+cot(θ))
|
f(θ)=\frac{\tan(θ)+\sin(θ)}{\csc(θ)+\cot(θ)}
|
f(x)=x(x-4)(2x-7)
|
f(x)=x(x-4)(2x-7)
|
y=-5x-9
|
y=-5x-9
|
f(x)=sec(1/x)
|
f(x)=\sec(\frac{1}{x})
|
f(x)=2x^2-7x-30
|
f(x)=2x^{2}-7x-30
|
g(x)=-6(x-2)(x)
|
g(x)=-6(x-2)(x)
|
f(x)=-1/((x+1)^2)
|
f(x)=-\frac{1}{(x+1)^{2}}
|
asymptotes of 7/(x^2+7x-8)
|
asymptotes\:\frac{7}{x^{2}+7x-8}
|
y=4x+29
|
y=4x+29
|
f(x)=(3x)/(x^2-x-2)
|
f(x)=\frac{3x}{x^{2}-x-2}
|
y=2x^2+8x+10
|
y=2x^{2}+8x+10
|
f(x)=-|x-1|+4
|
f(x)=-\left|x-1\right|+4
|
f(x)=x^3+x^2-5
|
f(x)=x^{3}+x^{2}-5
|
f(n)=5n^2+10n+20
|
f(n)=5n^{2}+10n+20
|
F(x)=(1/2)^x
|
F(x)=(\frac{1}{2})^{x}
|
f(x)=e^{2x^3}
|
f(x)=e^{2x^{3}}
|
f(x)= x/((1-x))
|
f(x)=\frac{x}{(1-x)}
|
f(a)= a/3
|
f(a)=\frac{a}{3}
|
perpendicular y=2x+3,\at (4,7)
|
perpendicular\:y=2x+3,\at\:(4,7)
|
f(x)=2x^2-16x+31
|
f(x)=2x^{2}-16x+31
|
f(θ)=1-tan(θ)
|
f(θ)=1-\tan(θ)
|
f(x)=(-4)/x
|
f(x)=\frac{-4}{x}
|
y=log_{4}(x-3)
|
y=\log_{4}(x-3)
|
f(x)=x^2e^{1/x}
|
f(x)=x^{2}e^{\frac{1}{x}}
|
y=e^{arctan(sqrt(x))}
|
y=e^{\arctan(\sqrt{x})}
|
f(x)=(1/(sqrt(2)))^{x-2}+1
|
f(x)=(\frac{1}{\sqrt{2}})^{x-2}+1
|
f(x)=4^{2x+3}
|
f(x)=4^{2x+3}
|
f(x)=log_{1/2}(x-3)
|
f(x)=\log_{\frac{1}{2}}(x-3)
|
y=(sin(x)+cos(x))/(tan(x))
|
y=\frac{\sin(x)+\cos(x)}{\tan(x)}
|
slope intercept of-5x+2y=7
|
slope\:intercept\:-5x+2y=7
|
h(x)=x^2-2x-3
|
h(x)=x^{2}-2x-3
|
y=-10x+8
|
y=-10x+8
|
f(x)=sqrt(x^4-81)
|
f(x)=\sqrt{x^{4}-81}
|
f(x)=(x^2+5)/x
|
f(x)=\frac{x^{2}+5}{x}
|
y=-8x+8
|
y=-8x+8
|
y=-8x+9
|
y=-8x+9
|
y=-8x+7
|
y=-8x+7
|
f(x)=x^2-4x-45
|
f(x)=x^{2}-4x-45
|
f(x)=x^2-4x-13
|
f(x)=x^{2}-4x-13
|
f(x)= 1/(sqrt(9-x)-3)
|
f(x)=\frac{1}{\sqrt{9-x}-3}
|
inflection points of f(x)=x^5-5x^4
|
inflection\:points\:f(x)=x^{5}-5x^{4}
|
f(m)=m^3-64
|
f(m)=m^{3}-64
|
f(x)=sqrt(x-x^5)e^{2x+3}
|
f(x)=\sqrt{x-x^{5}}e^{2x+3}
|
f(m)=(m+2)/(m^2+8)
|
f(m)=\frac{m+2}{m^{2}+8}
|
f(n)=20n^2-9n-20
|
f(n)=20n^{2}-9n-20
|
f(x)=13x^{13}
|
f(x)=13x^{13}
|
f(x)=e^{1-x^2}
|
f(x)=e^{1-x^{2}}
|
f(x)=x^3+64
|
f(x)=x^{3}+64
|
y=2x^2-11x+12
|
y=2x^{2}-11x+12
|
f(x)=2x^3+2x
|
f(x)=2x^{3}+2x
|
asymptotes of f(x)=(x^2-x+6)/(x+3)
|
asymptotes\:f(x)=\frac{x^{2}-x+6}{x+3}
|
f(x)=-2log_{5}(x+2)-8
|
f(x)=-2\log_{5}(x+2)-8
|
y=x^3+3x^2-5
|
y=x^{3}+3x^{2}-5
|
y=x^3+3x^2-4
|
y=x^{3}+3x^{2}-4
|
f(x)= 1/(x^2-2)
|
f(x)=\frac{1}{x^{2}-2}
|
y=-9x+8
|
y=-9x+8
|
f(x)=-1/2 ln(x)
|
f(x)=-\frac{1}{2}\ln(x)
|
y=ln(sqrt(1+x^2))
|
y=\ln(\sqrt{1+x^{2}})
|
f(x)=x^2-7x^3+x+4
|
f(x)=x^{2}-7x^{3}+x+4
|
y=3^{x-1}-2
|
y=3^{x-1}-2
|
y=3(x-1)^2+1
|
y=3(x-1)^{2}+1
|
distance (0,1)(8,7)
|
distance\:(0,1)(8,7)
|
y= 3/5 x-7
|
y=\frac{3}{5}x-7
|
y=4log_{3}(-x-3)
|
y=4\log_{3}(-x-3)
|
f(x)= 1/(cos^2(x))
|
f(x)=\frac{1}{\cos^{2}(x)}
|
f(x)=x^3+3x^2-x+1
|
f(x)=x^{3}+3x^{2}-x+1
|
f(x)=arctan(x)+x
|
f(x)=\arctan(x)+x
|
f(x)=(x^2-5x+6)/(x-2)
|
f(x)=\frac{x^{2}-5x+6}{x-2}
|
y=-12x+3
|
y=-12x+3
|
f(n)= n/(n^2+1)
|
f(n)=\frac{n}{n^{2}+1}
|
f(x)=(x-3)/(x-1)
|
f(x)=\frac{x-3}{x-1}
|
f(t)=(ln(t))^2
|
f(t)=(\ln(t))^{2}
|
domain of-2.318+0.2356x-0.002674x^2
|
domain\:-2.318+0.2356x-0.002674x^{2}
|
f(-3)=2x^3+6
|
f(-3)=2x^{3}+6
|
P(w)=21+2w
|
P(w)=21+2w
|
f(θ)=2-2cos(θ)
|
f(θ)=2-2\cos(θ)
|
y=\sqrt[3]{x+3}-1
|
y=\sqrt[3]{x+3}-1
|
y=((x+1)(3x-2))/((x-1)(x+4))
|
y=\frac{(x+1)(3x-2)}{(x-1)(x+4)}
|
y=2x^2+12x+17
|
y=2x^{2}+12x+17
|
f(x)=144+x^2
|
f(x)=144+x^{2}
|
f(t)=20cos(36t)cos(6t)
|
f(t)=20\cos(36t)\cos(6t)
|
y=sin(3x^2)
|
y=\sin(3x^{2})
|
f(x)=e^{-2/x}
|
f(x)=e^{-\frac{2}{x}}
|
distance (1,0)(-5,-6)
|
distance\:(1,0)(-5,-6)
|
f(x)=(x^2-1)/(x^2+3x+2)
|
f(x)=\frac{x^{2}-1}{x^{2}+3x+2}
|
f(x)=2^{x-2}-4
|
f(x)=2^{x-2}-4
|
f(t)=e^{-6t}
|
f(t)=e^{-6t}
|
y=4x^2+40x-375
|
y=4x^{2}+40x-375
|
y=-2x^2+16x-30
|
y=-2x^{2}+16x-30
|
f(x)=(x+5)/(x^2+x-6)
|
f(x)=\frac{x+5}{x^{2}+x-6}
|
y=3sin(-x/3)
|
y=3\sin(-\frac{x}{3})
|
f(θ)=3sin(2θ)
|
f(θ)=3\sin(2θ)
|
y=(2x-1)/(x+1)
|
y=\frac{2x-1}{x+1}
|
f(x)=(x-5)/(2x+7)
|
f(x)=\frac{x-5}{2x+7}
|
inverse of f(x)=(-3x)/(3x-4)
|
inverse\:f(x)=\frac{-3x}{3x-4}
|