f(x)=(5x^2-10x)/(4x-8)
|
f(x)=\frac{5x^{2}-10x}{4x-8}
|
f(t)=e^t+e^{2t}
|
f(t)=e^{t}+e^{2t}
|
f(x)=(x^2+5x+4)/(x^2-1)
|
f(x)=\frac{x^{2}+5x+4}{x^{2}-1}
|
f(x)=(5x)/(x+3)
|
f(x)=\frac{5x}{x+3}
|
range of (2x)/(x^2-1)
|
range\:\frac{2x}{x^{2}-1}
|
f(x)=(5x)/(x+1)
|
f(x)=\frac{5x}{x+1}
|
f(x)=x^3-7x^2+7x+15
|
f(x)=x^{3}-7x^{2}+7x+15
|
f(x)=(5x)/(x-3)
|
f(x)=\frac{5x}{x-3}
|
f(x)=(cot^2(x))/(csc(x)+1)
|
f(x)=\frac{\cot^{2}(x)}{\csc(x)+1}
|
y=-4x^3-4x^2+120x
|
y=-4x^{3}-4x^{2}+120x
|
f(m)=m^2-2m-3
|
f(m)=m^{2}-2m-3
|
y= 1/(|x|)
|
y=\frac{1}{\left|x\right|}
|
y=x^3-5x^2+3x+5
|
y=x^{3}-5x^{2}+3x+5
|
f(x)=-1/2 x-2
|
f(x)=-\frac{1}{2}x-2
|
y=-4x-9
|
y=-4x-9
|
domain of f(x)=3x+1
|
domain\:f(x)=3x+1
|
g(x)=log_{2}(x+3)
|
g(x)=\log_{2}(x+3)
|
f(x)=4(x+3/2)^2-3
|
f(x)=4(x+\frac{3}{2})^{2}-3
|
f(x)= 1/3 (4-x)^2
|
f(x)=\frac{1}{3}(4-x)^{2}
|
f(n)=(-sqrt(3))^n
|
f(n)=(-\sqrt{3})^{n}
|
y=2x^2-24x+86
|
y=2x^{2}-24x+86
|
y=sec(3x)
|
y=\sec(3x)
|
f(x)=((x+1))/((x-1))
|
f(x)=\frac{(x+1)}{(x-1)}
|
f(x)=-(x-4)^2+2
|
f(x)=-(x-4)^{2}+2
|
f(x)=(x-2)/(x^3)
|
f(x)=\frac{x-2}{x^{3}}
|
g(x)=e^x
|
g(x)=e^{x}
|
line (3,-4),(-1,6)
|
line\:(3,-4),(-1,6)
|
f(x)=4x^2+5x+3
|
f(x)=4x^{2}+5x+3
|
f(x)=4x^2+5x-2
|
f(x)=4x^{2}+5x-2
|
f(x)=5x^2-2x-1
|
f(x)=5x^{2}-2x-1
|
f(x)=sin^7(x)
|
f(x)=\sin^{7}(x)
|
y=4x+16
|
y=4x+16
|
f(x)=x^3+x^2+5
|
f(x)=x^{3}+x^{2}+5
|
f(x)=x^3+x^2+4
|
f(x)=x^{3}+x^{2}+4
|
y=x^{2/3}(6-x)^{1/3}
|
y=x^{\frac{2}{3}}(6-x)^{\frac{1}{3}}
|
y=(x^2+x)/(x^2-1)
|
y=\frac{x^{2}+x}{x^{2}-1}
|
f(x)=x^2+7x+30
|
f(x)=x^{2}+7x+30
|
domain of 2+sqrt(4+11x)
|
domain\:2+\sqrt{4+11x}
|
f(X)=cos(X)
|
f(X)=\cos(X)
|
f(a)= a/6
|
f(a)=\frac{a}{6}
|
f(x)=2x^2-16x+33
|
f(x)=2x^{2}-16x+33
|
f(x)=-3*x^2
|
f(x)=-3\cdot\:x^{2}
|
f(x)=-x^2+8x-9
|
f(x)=-x^{2}+8x-9
|
f(x)=-x^2+8x-3
|
f(x)=-x^{2}+8x-3
|
f(x)=-|x+2|-3
|
f(x)=-\left|x+2\right|-3
|
f(x)= 1/(sqrt(3x))
|
f(x)=\frac{1}{\sqrt{3x}}
|
f(x)=(x^2-4x+5)^6
|
f(x)=(x^{2}-4x+5)^{6}
|
f(x)= 1/(1+e^{1/x)}
|
f(x)=\frac{1}{1+e^{\frac{1}{x}}}
|
f(t)=2e^{4t}
|
f(t)=2e^{4t}
|
f(x)=tan(ln(x))
|
f(x)=\tan(\ln(x))
|
y=(-2)/x
|
y=\frac{-2}{x}
|
f(x)=xe^x-e^x+1
|
f(x)=xe^{x}-e^{x}+1
|
f(x)=cos(x)*cot(x)
|
f(x)=\cos(x)\cdot\:\cot(x)
|
f(x)=x^2-4x-60
|
f(x)=x^{2}-4x-60
|
f(x)=-x+7-10x^2
|
f(x)=-x+7-10x^{2}
|
f(x)= 1/3 x^3+3x^2-27x
|
f(x)=\frac{1}{3}x^{3}+3x^{2}-27x
|
y= 2/(3x+2)
|
y=\frac{2}{3x+2}
|
y=-7x-5
|
y=-7x-5
|
critical points of x^{4/3}+4x^{1/3}
|
critical\:points\:x^{\frac{4}{3}}+4x^{\frac{1}{3}}
|
f(x)=(x+7)/(7x+49)
|
f(x)=\frac{x+7}{7x+49}
|
f(t)=tsin(4t)
|
f(t)=t\sin(4t)
|
f(x)=|x(x-1)|,0<= x<= 1
|
f(x)=\left|x(x-1)\right|,0\le\:x\le\:1
|
y=log_{10}(x)+1
|
y=\log_{10}(x)+1
|
f(x)=(x-3)^2-6
|
f(x)=(x-3)^{2}-6
|
f(x)=(x-3)^2+3
|
f(x)=(x-3)^{2}+3
|
y= 3/5 x-5
|
y=\frac{3}{5}x-5
|
f(m)=m-6+15m^2
|
f(m)=m-6+15m^{2}
|
y=cos^2(2x)
|
y=\cos^{2}(2x)
|
f(x)=(x-3)/(x-4)
|
f(x)=\frac{x-3}{x-4}
|
domain of 4/(2-x)
|
domain\:\frac{4}{2-x}
|
y=x^2+sin(x)
|
y=x^{2}+\sin(x)
|
f(I)=I^{37}
|
f(I)=I^{37}
|
f(x)=sqrt(1-tan^2(x))
|
f(x)=\sqrt{1-\tan^{2}(x)}
|
f(t)=(5t)/(t^2+1)
|
f(t)=\frac{5t}{t^{2}+1}
|
y= x/(sqrt(1+x^2))
|
y=\frac{x}{\sqrt{1+x^{2}}}
|
f(x)=(10)/(sqrt(1-x))
|
f(x)=\frac{10}{\sqrt{1-x}}
|
f(x)=(x^2-1)^{1/2}
|
f(x)=(x^{2}-1)^{\frac{1}{2}}
|
f(x)=sqrt(-x+9)
|
f(x)=\sqrt{-x+9}
|
f(t)=t*sin(t)
|
f(t)=t\cdot\:\sin(t)
|
f(x)=x^2-|x|
|
f(x)=x^{2}-\left|x\right|
|
range of f(x)=e^{-x}-1
|
range\:f(x)=e^{-x}-1
|
f(x)=2x^3+x^2-5x+2
|
f(x)=2x^{3}+x^{2}-5x+2
|
y=-16x^2+146x+137
|
y=-16x^{2}+146x+137
|
f(x)=x^5-1
|
f(x)=x^{5}-1
|
p(x)=x^5+x^4-x-1
|
p(x)=x^{5}+x^{4}-x-1
|
f(x)=\sqrt[3]{x}sqrt(x+4)
|
f(x)=\sqrt[3]{x}\sqrt{x+4}
|
f(z)=z^2-2z+2
|
f(z)=z^{2}-2z+2
|
f(x)=x^2+2x-3,-4<= x<= 4
|
f(x)=x^{2}+2x-3,-4\le\:x\le\:4
|
f(x)=sqrt((x+3)/(x-4))
|
f(x)=\sqrt{\frac{x+3}{x-4}}
|
f(y)=(\sqrt[3]{2}-\sqrt[3]{y})/(y^2-4)
|
f(y)=\frac{\sqrt[3]{2}-\sqrt[3]{y}}{y^{2}-4}
|
r(θ)=4tan(θ)sec(θ)
|
r(θ)=4\tan(θ)\sec(θ)
|
slope of y-3=-2(x+1)
|
slope\:y-3=-2(x+1)
|
f(x)=(18-11x+x^2)/(x-2)
|
f(x)=\frac{18-11x+x^{2}}{x-2}
|
y=-1/2 cos(x)
|
y=-\frac{1}{2}\cos(x)
|
y=x+ln(x)
|
y=x+\ln(x)
|
f(x)=2log_{3}(2x+4)-1
|
f(x)=2\log_{3}(2x+4)-1
|
f(x)=|x-3|-4
|
f(x)=\left|x-3\right|-4
|
y=(2x-1)/(x-1)
|
y=\frac{2x-1}{x-1}
|
f(x)=xcos(2x)-3sin(2x)
|
f(x)=x\cos(2x)-3\sin(2x)
|
f(x)=7(x^{1/3}+9)^5
|
f(x)=7(x^{\frac{1}{3}}+9)^{5}
|