f(x)=x^2+12x+9
|
f(x)=x^{2}+12x+9
|
f(x)=sqrt(9-4x^2)
|
f(x)=\sqrt{9-4x^{2}}
|
f(x)= x/(1-2x)
|
f(x)=\frac{x}{1-2x}
|
y=3x^2-8x+2
|
y=3x^{2}-8x+2
|
f(x)=sqrt(-2x)
|
f(x)=\sqrt{-2x}
|
f(x)=ln(1-6x)
|
f(x)=\ln(1-6x)
|
f(x)=9-4x
|
f(x)=9-4x
|
f(x)=ln(7+x)
|
f(x)=\ln(7+x)
|
y=-2x^2+5
|
y=-2x^{2}+5
|
f(θ)= θ/2
|
f(θ)=\frac{θ}{2}
|
line (1,-3)(3,-1)
|
line\:(1,-3)(3,-1)
|
f(y)=y^{3/4}
|
f(y)=y^{\frac{3}{4}}
|
y=(-1)/(4x+2)
|
y=\frac{-1}{4x+2}
|
f(x)=(5x+1)/(2x-4)
|
f(x)=\frac{5x+1}{2x-4}
|
f(x)=x^2sqrt(x+1)
|
f(x)=x^{2}\sqrt{x+1}
|
f(x)=6x+9
|
f(x)=6x+9
|
f(x)=cot(x)+tan(x)
|
f(x)=\cot(x)+\tan(x)
|
y=5x+35
|
y=5x+35
|
f(θ)=2sin(7θ)cos(θ)-sin(6θ)
|
f(θ)=2\sin(7θ)\cos(θ)-\sin(6θ)
|
f(x)=x^5+x^4
|
f(x)=x^{5}+x^{4}
|
f(x)=-2x^2-4x-2
|
f(x)=-2x^{2}-4x-2
|
f(n)=n^2-7n-8
|
f(n)=n^{2}-7n-8
|
f(x)=4x+x^3
|
f(x)=4x+x^{3}
|
f(x)=(x^3-1)/(x^2-1)
|
f(x)=\frac{x^{3}-1}{x^{2}-1}
|
f(s)= 1/(s^2+4s+5)
|
f(s)=\frac{1}{s^{2}+4s+5}
|
f(s)= 1/(s^2+4s+8)
|
f(s)=\frac{1}{s^{2}+4s+8}
|
y=1+2x
|
y=1+2x
|
f(x)=sqrt(-x^2+2x+3)
|
f(x)=\sqrt{-x^{2}+2x+3}
|
f(x)=+2
|
f(x)=+2
|
f(x)=18
|
f(x)=18
|
y=-2x^2+3x+2
|
y=-2x^{2}+3x+2
|
inverse of f(x)= 1/7 (x^3-1)
|
inverse\:f(x)=\frac{1}{7}(x^{3}-1)
|
y=(x+4)^2+4
|
y=(x+4)^{2}+4
|
f(m)=m^2+8m-84
|
f(m)=m^{2}+8m-84
|
y=-x^2-3x-4
|
y=-x^{2}-3x-4
|
f(x)= 2/3 x^2
|
f(x)=\frac{2}{3}x^{2}
|
y=x^4-2x^3+2
|
y=x^{4}-2x^{3}+2
|
f(x)=4x-17
|
f(x)=4x-17
|
f(x)=4x-25
|
f(x)=4x-25
|
r(θ)=10cos(θ)
|
r(θ)=10\cos(θ)
|
f(x)=(x^2x^5x^6)^4-(xx^4x^5x^3)^4
|
f(x)=(x^{2}x^{5}x^{6})^{4}-(xx^{4}x^{5}x^{3})^{4}
|
f(x)=x^2-5x+36
|
f(x)=x^{2}-5x+36
|
asymptotes of (x+6)/(x-2)
|
asymptotes\:\frac{x+6}{x-2}
|
f(x)=(x^2+6x+8)/(x+4)
|
f(x)=\frac{x^{2}+6x+8}{x+4}
|
f(x)=x^4-2x
|
f(x)=x^{4}-2x
|
y=x^2-3x-3
|
y=x^{2}-3x-3
|
y=x^2-3x-5
|
y=x^{2}-3x-5
|
y= 2/(e^{x/2)+e^{-x/2}}
|
y=\frac{2}{e^{\frac{x}{2}}+e^{-\frac{x}{2}}}
|
f(m)=m^4-16
|
f(m)=m^{4}-16
|
y=x^2+1/(x^2)
|
y=x^{2}+\frac{1}{x^{2}}
|
f(x)=-2/3 x+2
|
f(x)=-\frac{2}{3}x+2
|
f(x)=8x+2
|
f(x)=8x+2
|
y=-2x^2+4x+2
|
y=-2x^{2}+4x+2
|
line m=7,\at (-3,4)
|
line\:m=7,\at\:(-3,4)
|
domain of sqrt(36-x^2)
|
domain\:\sqrt{36-x^{2}}
|
y=-2x^2+4x-6
|
y=-2x^{2}+4x-6
|
y=-2x^2+4x+8
|
y=-2x^{2}+4x+8
|
f(x)= pi/3
|
f(x)=\frac{π}{3}
|
f(x)= 3/(x^5)
|
f(x)=\frac{3}{x^{5}}
|
f(x)=((2x-1))/((x+1))
|
f(x)=\frac{(2x-1)}{(x+1)}
|
f(x)=(1-tan^2(x))/(cot^2(x)-1)
|
f(x)=\frac{1-\tan^{2}(x)}{\cot^{2}(x)-1}
|
f(-2)=3^x
|
f(-2)=3^{x}
|
y=-2(x+3)^2
|
y=-2(x+3)^{2}
|
y=0x+3
|
y=0x+3
|
y=-x^2-5x+6
|
y=-x^{2}-5x+6
|
line (-3,-4)(5,-2)
|
line\:(-3,-4)(5,-2)
|
h(x)=(x+4)^2
|
h(x)=(x+4)^{2}
|
f(x)=(x^3)/(x^2+4)
|
f(x)=\frac{x^{3}}{x^{2}+4}
|
f(x)=sin(x^2+x)
|
f(x)=\sin(x^{2}+x)
|
f(x)=-2x^2-5x+2
|
f(x)=-2x^{2}-5x+2
|
f(x)=sqrt(x^2-6x+5)
|
f(x)=\sqrt{x^{2}-6x+5}
|
y=2tan(2x)+1
|
y=2\tan(2x)+1
|
y=2-4x
|
y=2-4x
|
y=x^2-6x-5
|
y=x^{2}-6x-5
|
y= 1/x-sqrt(1-x^2)
|
y=\frac{1}{x}-\sqrt{1-x^{2}}
|
g(x)=4x^2-3
|
g(x)=4x^{2}-3
|
inverse of f(x)=((x+7))/((x-6))
|
inverse\:f(x)=\frac{(x+7)}{(x-6)}
|
y=x-14
|
y=x-14
|
y=-3(x+1)^2
|
y=-3(x+1)^{2}
|
f(x)=x^2+8x+32
|
f(x)=x^{2}+8x+32
|
f(x)=-8x+6
|
f(x)=-8x+6
|
f(θ)=cot(θ)+1
|
f(θ)=\cot(θ)+1
|
f(x)=(x^2-1)/(x^2+x)
|
f(x)=\frac{x^{2}-1}{x^{2}+x}
|
g(x)=(1/5)^x
|
g(x)=(\frac{1}{5})^{x}
|
f(x)= 1/((1+x)^6)
|
f(x)=\frac{1}{(1+x)^{6}}
|
f(x)= 1/((1+x)^7)
|
f(x)=\frac{1}{(1+x)^{7}}
|
f(x)= 1/((1+x)^8)
|
f(x)=\frac{1}{(1+x)^{8}}
|
range of f(x)=sqrt(x)+1
|
range\:f(x)=\sqrt{x}+1
|
f(x)=-2x^2-8x-5
|
f(x)=-2x^{2}-8x-5
|
y=(x+1)^x
|
y=(x+1)^{x}
|
g(x)=(x-3)(ln(x)-x)
|
g(x)=(x-3)(\ln(x)-x)
|
y=5+2t
|
y=5+2t
|
f(x)=-2x^2-6x+11
|
f(x)=-2x^{2}-6x+11
|
r(θ)=sqrt(θ)
|
r(θ)=\sqrt{θ}
|
y=5x^2-20x+25
|
y=5x^{2}-20x+25
|
g(x)=7
|
g(x)=7
|
y=arccos(2x)
|
y=\arccos(2x)
|
f(x)=x^3-4x+4
|
f(x)=x^{3}-4x+4
|
slope of 5x-3y=15
|
slope\:5x-3y=15
|
y=(2x-1)/((x-1)^2)
|
y=\frac{2x-1}{(x-1)^{2}}
|