critical f(x)=(x-2)^2+1
|
critical\:f(x)=(x-2)^{2}+1
|
critical f(x)=(2x)/(x^2-16)
|
critical\:f(x)=\frac{2x}{x^{2}-16}
|
critical 2x-2
|
critical\:2x-2
|
g(x,y)=(e^{-(x^2+y^2)}+y^2)/2
|
g(x,y)=\frac{e^{-(x^{2}+y^{2})}+y^{2}}{2}
|
domain 5*3^x
|
domain\:5\cdot\:3^{x}
|
critical f(xy)=30x^2y-45x^2+4y^3-30y^2+7
|
critical\:f(xy)=30x^{2}y-45x^{2}+4y^{3}-30y^{2}+7
|
critical f(x)=ln(2x)-(x^2)/5
|
critical\:f(x)=\ln(2x)-\frac{x^{2}}{5}
|
critical f(x)=2-sec^2(x)
|
critical\:f(x)=2-\sec^{2}(x)
|
critical f(x)=x+x/(x^2-1)
|
critical\:f(x)=x+\frac{x}{x^{2}-1}
|
critical f(x)=x^3e^{2x}
|
critical\:f(x)=x^{3}e^{2x}
|
critical f(x)=-x^3-6x^2
|
critical\:f(x)=-x^{3}-6x^{2}
|
critical f(x)=((x^4+1))/(x^2)
|
critical\:f(x)=\frac{(x^{4}+1)}{x^{2}}
|
critical f(x)=2x^5-2x^4+3x^3-x+1
|
critical\:f(x)=2x^{5}-2x^{4}+3x^{3}-x+1
|
critical x-6sqrt(x-1)
|
critical\:x-6\sqrt{x-1}
|
critical sqrt(x-3ln(x))
|
critical\:\sqrt{x-3\ln(x)}
|
domain f(x)=-2x-1
|
domain\:f(x)=-2x-1
|
critical y^1=x^2-3x+2
|
critical\:y^{1}=x^{2}-3x+2
|
critical f(x)= 3/16 (x+2)^{4/3}-3/2 (x+2)^{1/3}+2
|
critical\:f(x)=\frac{3}{16}(x+2)^{\frac{4}{3}}-\frac{3}{2}(x+2)^{\frac{1}{3}}+2
|
critical f(x)=x^3+12x^2-27x+3
|
critical\:f(x)=x^{3}+12x^{2}-27x+3
|
critical f(x)=-2x^3+36x^2-162x+6
|
critical\:f(x)=-2x^{3}+36x^{2}-162x+6
|
critical f(x)=2x^3+3x^2+12x-4
|
critical\:f(x)=2x^{3}+3x^{2}+12x-4
|
critical f(x)=2x^3-3x^2y-12x^2-3y^2
|
critical\:f(x)=2x^{3}-3x^{2}y-12x^{2}-3y^{2}
|
critical f(x)=ln(x^4+27)
|
critical\:f(x)=\ln(x^{4}+27)
|
critical f(x)=4x^3+2x
|
critical\:f(x)=4x^{3}+2x
|
critical f(x)=2x^4+y^4-4x^2-2y^2
|
critical\:f(x)=2x^{4}+y^{4}-4x^{2}-2y^{2}
|
critical g(θ)=32θ-8tan(θ)
|
critical\:g(θ)=32θ-8\tan(θ)
|
monotone intervals f(x)=1-x^2
|
monotone\:intervals\:f(x)=1-x^{2}
|
critical f(x)=2x^2+4x-5
|
critical\:f(x)=2x^{2}+4x-5
|
critical f(x)=x^4+6x^3+11x^2+6x+200
|
critical\:f(x)=x^{4}+6x^{3}+11x^{2}+6x+200
|
critical x^2(x-12)^2
|
critical\:x^{2}(x-12)^{2}
|
critical f(x)=(x^3-x)/(x^2-4)
|
critical\:f(x)=\frac{x^{3}-x}{x^{2}-4}
|
critical f(x,y)= 1/3 x^3-xy^2+y^2
|
critical\:f(x,y)=\frac{1}{3}x^{3}-xy^{2}+y^{2}
|
critical x^2-4xy+5
|
critical\:x^{2}-4xy+5
|
critical f(x)=-2x^2ln(x)+9x^2
|
critical\:f(x)=-2x^{2}\ln(x)+9x^{2}
|
critical f(x)=-4xe^{6x}
|
critical\:f(x)=-4xe^{6x}
|
critical f(x)=-x^3+6x^2+x+1
|
critical\:f(x)=-x^{3}+6x^{2}+x+1
|
critical f(x,y)=(x^2-8x)(y^2-5y)
|
critical\:f(x,y)=(x^{2}-8x)(y^{2}-5y)
|
inverse f(x)=(2x+4)/(x-5)
|
inverse\:f(x)=\frac{2x+4}{x-5}
|
critical f(x)=x^3+6x^2-135x+10
|
critical\:f(x)=x^{3}+6x^{2}-135x+10
|
critical-cos(x-π/2)
|
critical\:-\cos(x-\frac{π}{2})
|
critical f(x)=-7x^2+112x+3
|
critical\:f(x)=-7x^{2}+112x+3
|
critical y=(x^2)/(x^2-16)
|
critical\:y=\frac{x^{2}}{x^{2}-16}
|
critical f(x)=x^2+4y^2+6
|
critical\:f(x)=x^{2}+4y^{2}+6
|
critical f(x)=2x^3+y^3-3x^2+1.5y^2-12x-90y
|
critical\:f(x)=2x^{3}+y^{3}-3x^{2}+1.5y^{2}-12x-90y
|
critical f(x,y)=7x^2+2xy^2-6x+1
|
critical\:f(x,y)=7x^{2}+2xy^{2}-6x+1
|
critical f(x)=e^{5x}(75x^2+3)
|
critical\:f(x)=e^{5x}(75x^{2}+3)
|
critical f(x)=x^3+2x^2-x-2
|
critical\:f(x)=x^{3}+2x^{2}-x-2
|
critical f(x)=y=x^2
|
critical\:f(x)=y=x^{2}
|
domain f(x)= 1/(x^2+3)
|
domain\:f(x)=\frac{1}{x^{2}+3}
|
critical x^4+4x^3
|
critical\:x^{4}+4x^{3}
|
critical-(2x)/((x^2-1)^2)
|
critical\:-\frac{2x}{(x^{2}-1)^{2}}
|
critical (t^2-1)/(e^{t^2)}
|
critical\:\frac{t^{2}-1}{e^{t^{2}}}
|
critical f(x)=((-5x^2-x))/(e^x)
|
critical\:f(x)=\frac{(-5x^{2}-x)}{e^{x}}
|
critical y=(x^2-6x+12)/(x-4)
|
critical\:y=\frac{x^{2}-6x+12}{x-4}
|
critical f(x)=x^2+9/(x^2)
|
critical\:f(x)=x^{2}+\frac{9}{x^{2}}
|
critical f(x)=x^2+y^2-xy+10x-2y
|
critical\:f(x)=x^{2}+y^{2}-xy+10x-2y
|
critical f(x,y)=(x^2+y^2)e^{-x}
|
critical\:f(x,y)=(x^{2}+y^{2})e^{-x}
|
critical 4e^{-2x}x^2-8e^{-2x}x+2e^{-2x}
|
critical\:4e^{-2x}x^{2}-8e^{-2x}x+2e^{-2x}
|
critical f(x)=12x^5+30x^4-300x^3+4
|
critical\:f(x)=12x^{5}+30x^{4}-300x^{3}+4
|
monotone intervals 3x^{2/3}-x
|
monotone\:intervals\:3x^{\frac{2}{3}}-x
|
f(x)=x^3y+12x-8y
|
f(x)=x^{3}y+12x-8y
|
critical f(x)=-4x^3-4x^2+5x-1
|
critical\:f(x)=-4x^{3}-4x^{2}+5x-1
|
critical (3-x)/(x+2)
|
critical\:\frac{3-x}{x+2}
|
critical f(x,y)=x^3+y^3-27x-12y
|
critical\:f(x,y)=x^{3}+y^{3}-27x-12y
|
f(x,y)=x^4-y^4
|
f(x,y)=x^{4}-y^{4}
|
critical x^4-8x^2+6
|
critical\:x^{4}-8x^{2}+6
|
critical x^4-8x^2-9
|
critical\:x^{4}-8x^{2}-9
|
critical f(x)=xe^{-2x^2-2y^2}
|
critical\:f(x)=xe^{-2x^{2}-2y^{2}}
|
critical f(x)=x^4-14x^2
|
critical\:f(x)=x^{4}-14x^{2}
|
critical (x^2)/(x+2)
|
critical\:\frac{x^{2}}{x+2}
|
range \sqrt[3]{x+3}
|
range\:\sqrt[3]{x+3}
|
inverse f(x)=sqrt(2-x)
|
inverse\:f(x)=\sqrt{2-x}
|
critical f(x)=35x^4+9x^2-4x+1
|
critical\:f(x)=35x^{4}+9x^{2}-4x+1
|
critical f(x)=x^2-y-ln(xy)
|
critical\:f(x)=x^{2}-y-\ln(xy)
|
critical f(x)=-8xy-2x^4-2y^4
|
critical\:f(x)=-8xy-2x^{4}-2y^{4}
|
critical f(x,y)=x^2-6xy+y^3+3x+6y-2
|
critical\:f(x,y)=x^{2}-6xy+y^{3}+3x+6y-2
|
critical f(x)=-(x^3)/3+25x
|
critical\:f(x)=-\frac{x^{3}}{3}+25x
|
critical 3/2 x^2+x^3+3y^2
|
critical\:\frac{3}{2}x^{2}+x^{3}+3y^{2}
|
critical f(x)=(4x^2)/(x^2+25)
|
critical\:f(x)=\frac{4x^{2}}{x^{2}+25}
|
critical f(x)=6x^5-40x^3
|
critical\:f(x)=6x^{5}-40x^{3}
|
critical y=4x^3-18x^2-24x-8
|
critical\:y=4x^{3}-18x^{2}-24x-8
|
critical xy-x-3y
|
critical\:xy-x-3y
|
inflection points (x+1)^{2/3}
|
inflection\:points\:(x+1)^{\frac{2}{3}}
|
critical (2x^2+x-3)/(x^2+1)
|
critical\:\frac{2x^{2}+x-3}{x^{2}+1}
|
critical f(x,y)=2x^3+6xy+60x+y^2+16y+72
|
critical\:f(x,y)=2x^{3}+6xy+60x+y^{2}+16y+72
|
critical f(x)=(x^{14})/(x^{13)+4}
|
critical\:f(x)=\frac{x^{14}}{x^{13}+4}
|
critical x/((x^2-9))
|
critical\:\frac{x}{(x^{2}-9)}
|
critical y^1=x^2-2x
|
critical\:y^{1}=x^{2}-2x
|
critical f(x)=3xe^x
|
critical\:f(x)=3xe^{x}
|
critical f(x)=x^3-2x^2-5x+2
|
critical\:f(x)=x^{3}-2x^{2}-5x+2
|
critical f(x)=(x+2)^2(x-1)^2
|
critical\:f(x)=(x+2)^{2}(x-1)^{2}
|
critical y=x^3-12x+1
|
critical\:y=x^{3}-12x+1
|
asymptotes (2x^2)/(x^2-1)
|
asymptotes\:\frac{2x^{2}}{x^{2}-1}
|
periodicity f(x)=sin^2(2x)
|
periodicity\:f(x)=\sin^{2}(2x)
|
asymptotes f(x)=(x^3-1)^{2/3}
|
asymptotes\:f(x)=(x^{3}-1)^{\frac{2}{3}}
|
asymptotes f(x)=xln(1-2/x)
|
asymptotes\:f(x)=x\ln(1-\frac{2}{x})
|
asymptotes f(x)= 1/(x^3+125)
|
asymptotes\:f(x)=\frac{1}{x^{3}+125}
|
asymptotes f(x)=(2x^2)/(1-x^2)
|
asymptotes\:f(x)=\frac{2x^{2}}{1-x^{2}}
|
asymptotes f(x)= 2/π arctan(x)-3
|
asymptotes\:f(x)=\frac{2}{π}\arctan(x)-3
|
asymptotes f(x)=(6x^2+3x+1)/(3x^2+4)
|
asymptotes\:f(x)=\frac{6x^{2}+3x+1}{3x^{2}+4}
|