f(x,y)=6x^2-9x^3y^3+3y^4
|
f(x,y)=6x^{2}-9x^{3}y^{3}+3y^{4}
|
critical f(x)=xe^{(-x^2)/8},-1<= x<= 4
|
critical\:f(x)=xe^{\frac{-x^{2}}{8}},-1\le\:x\le\:4
|
critical f(x)= 1/(x^2-5x+6)
|
critical\:f(x)=\frac{1}{x^{2}-5x+6}
|
critical f(x)=1+3y
|
critical\:f(x)=1+3y
|
critical f(x)=5x^2-3y^2-30x+7y+4xy
|
critical\:f(x)=5x^{2}-3y^{2}-30x+7y+4xy
|
critical points f(x)=x^3-x^2+3
|
critical\:points\:f(x)=x^{3}-x^{2}+3
|
critical f(x)=-x^2(x-3)^2
|
critical\:f(x)=-x^{2}(x-3)^{2}
|
critical f(x)=(-(2(0.3)^3+1))/(((0.3)^3-1)^2)
|
critical\:f(x)=\frac{-(2(0.3)^{3}+1)}{((0.3)^{3}-1)^{2}}
|
critical y= 1/(x-2)-3
|
critical\:y=\frac{1}{x-2}-3
|
critical f(x)= 1/(1+x^2)-3x^2
|
critical\:f(x)=\frac{1}{1+x^{2}}-3x^{2}
|
critical f(x)=cos(x)-sin(x),(0,2π)
|
critical\:f(x)=\cos(x)-\sin(x),(0,2π)
|
f(x)=In(2x-1)
|
f(x)=In(2x-1)
|
critical f(x)=2x^4-4x^2+1
|
critical\:f(x)=2x^{4}-4x^{2}+1
|
g(x)=In(x-1)+e^{x^2-3}+(x^2-4)^{5/3}
|
g(x)=In(x-1)+e^{x^{2}-3}+(x^{2}-4)^{\frac{5}{3}}
|
critical-(12x+6y^2+ln|x+y|)
|
critical\:-(12x+6y^{2}+\ln\left|x+y\right|)
|
critical f(x)=(2x^2)/(x^2-4)
|
critical\:f(x)=\frac{2x^{2}}{x^{2}-4}
|
inverse f(x)=(x+2) 1/5
|
inverse\:f(x)=(x+2)\frac{1}{5}
|
critical-3x^2-2y^2+3x-4y+5
|
critical\:-3x^{2}-2y^{2}+3x-4y+5
|
critical 1-7/(x+7)
|
critical\:1-\frac{7}{x+7}
|
critical f(x)= 1/(x^2+2x+2)
|
critical\:f(x)=\frac{1}{x^{2}+2x+2}
|
critical f(x)=2x^3+12xy-6y^2
|
critical\:f(x)=2x^{3}+12xy-6y^{2}
|
critical f(x)=ln(8+27x^3)
|
critical\:f(x)=\ln(8+27x^{3})
|
critical f(x)=sin^2(5x)+cos(5x),0<x<(2π)/5
|
critical\:f(x)=\sin^{2}(5x)+\cos(5x),0<x<\frac{2π}{5}
|
critical f(x)=3x+5x^{-1}
|
critical\:f(x)=3x+5x^{-1}
|
critical (x^2-1)^{2/3}
|
critical\:(x^{2}-1)^{\frac{2}{3}}
|
critical 4x^2
|
critical\:4x^{2}
|
critical 3/(x^2-2x)
|
critical\:\frac{3}{x^{2}-2x}
|
line (3,3)(3,4)
|
line\:(3,3)(3,4)
|
critical f(x)=4x^3-x^2+3
|
critical\:f(x)=4x^{3}-x^{2}+3
|
critical e^{x(y+1)}
|
critical\:e^{x(y+1)}
|
critical 1/2 (x^2-4x+2)e^{-x}
|
critical\:\frac{1}{2}(x^{2}-4x+2)e^{-x}
|
critical (e^{4x})/(x+3)
|
critical\:\frac{e^{4x}}{x+3}
|
critical f(x)=\sqrt[5]{x}
|
critical\:f(x)=\sqrt[5]{x}
|
critical e^{-t^2}(t^2-1)
|
critical\:e^{-t^{2}}(t^{2}-1)
|
critical f(x)=-4(x+2)^{2/3}+1/4 (x+2)^{8/3}-2
|
critical\:f(x)=-4(x+2)^{\frac{2}{3}}+\frac{1}{4}(x+2)^{\frac{8}{3}}-2
|
critical-5-10x-25x^2
|
critical\:-5-10x-25x^{2}
|
critical f(x)=x^4-8x^3+16x
|
critical\:f(x)=x^{4}-8x^{3}+16x
|
critical (x-3)/(x^2-3x+9)
|
critical\:\frac{x-3}{x^{2}-3x+9}
|
intercepts f(x)=-3x+y=3
|
intercepts\:f(x)=-3x+y=3
|
critical (3x)/(x^2+9)
|
critical\:\frac{3x}{x^{2}+9}
|
critical f(x)=3x^5+5x^4
|
critical\:f(x)=3x^{5}+5x^{4}
|
critical te^{8t}
|
critical\:te^{8t}
|
critical (1-x^2)^2
|
critical\:(1-x^{2})^{2}
|
critical 6x^3-3x^2+4
|
critical\:6x^{3}-3x^{2}+4
|
critical f(x)=cos^2(x)+sqrt(3)sin(x),(-π/2 , π/2)
|
critical\:f(x)=\cos^{2}(x)+\sqrt{3}\sin(x),(-\frac{π}{2},\frac{π}{2})
|
critical f(x)=6x-18=0
|
critical\:f(x)=6x-18=0
|
critical f(x)=(x^3)/3-(x^2)/2-2x+1
|
critical\:f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2x+1
|
critical (x^2-3x)/(x^2-4x+4)
|
critical\:\frac{x^{2}-3x}{x^{2}-4x+4}
|
critical f(x)=xsqrt(62500-x^2)
|
critical\:f(x)=x\sqrt{62500-x^{2}}
|
domain f(x)=sqrt((3x-6)/x)
|
domain\:f(x)=\sqrt{\frac{3x-6}{x}}
|
critical xy(1-x-y)
|
critical\:xy(1-x-y)
|
critical y=8e^{-1/6 t}
|
critical\:y=8e^{-\frac{1}{6}t}
|
critical (x-1)^2
|
critical\:(x-1)^{2}
|
critical x^3+2x^2-x-2
|
critical\:x^{3}+2x^{2}-x-2
|
critical f(x)=(x^3-3x^2+4)^{1/3}
|
critical\:f(x)=(x^{3}-3x^{2}+4)^{\frac{1}{3}}
|
critical f(x)=3x^2-6x+2
|
critical\:f(x)=3x^{2}-6x+2
|
critical f(x)=8(x-2)^{2/3}
|
critical\:f(x)=8(x-2)^{\frac{2}{3}}
|
critical f(x)=3x^2+2x+2
|
critical\:f(x)=3x^{2}+2x+2
|
critical-6x^5+10x^3
|
critical\:-6x^{5}+10x^{3}
|
critical (x^2)/(x^2+2)
|
critical\:\frac{x^{2}}{x^{2}+2}
|
domain-3x^2+3x-2
|
domain\:-3x^{2}+3x-2
|
periodicity f(x)=cos(4pi t+60^{\circ})-sin(4pi t+60^{\circ})
|
periodicity\:f(x)=\cos(4\pi\:t+60^{\circ\:})-\sin(4\pi\:t+60^{\circ\:})
|
critical f(x)=3x^2+2x-5
|
critical\:f(x)=3x^{2}+2x-5
|
critical f(x)=x^{1/5}-x^{6/5}
|
critical\:f(x)=x^{\frac{1}{5}}-x^{\frac{6}{5}}
|
critical f(x)=e^x-2x
|
critical\:f(x)=e^{x}-2x
|
critical f(x)=x^4-32x+7
|
critical\:f(x)=x^{4}-32x+7
|
critical f(x)=x^4-32x+5
|
critical\:f(x)=x^{4}-32x+5
|
critical f(x,y)=x^2+xy+y^2-3x+2
|
critical\:f(x,y)=x^{2}+xy+y^{2}-3x+2
|
critical (x^2+1)/(x^2-x-6)
|
critical\:\frac{x^{2}+1}{x^{2}-x-6}
|
critical y=x^{2/3}(x^2-4)
|
critical\:y=x^{\frac{2}{3}}(x^{2}-4)
|
critical f(x)=((4x))/((x^2+1))
|
critical\:f(x)=\frac{(4x)}{(x^{2}+1)}
|
inverse 2/(x+8)
|
inverse\:\frac{2}{x+8}
|
critical xe^{-8x}
|
critical\:xe^{-8x}
|
critical 6x-x^2
|
critical\:6x-x^{2}
|
f(y)=6x^2-9x^3y^3+3y^4
|
f(y)=6x^{2}-9x^{3}y^{3}+3y^{4}
|
critical 1/3 x^3+3/2 x^2-18x
|
critical\:\frac{1}{3}x^{3}+\frac{3}{2}x^{2}-18x
|
critical f(x)=12x^2
|
critical\:f(x)=12x^{2}
|
critical f(x)=27x-(x^3)/4
|
critical\:f(x)=27x-\frac{x^{3}}{4}
|
critical y=x^4-2x^2-3
|
critical\:y=x^{4}-2x^{2}-3
|
critical f(x)=9sqrt(x)-x^2
|
critical\:f(x)=9\sqrt{x}-x^{2}
|
critical f(x)=y=x^3-6x^2-15x+16
|
critical\:f(x)=y=x^{3}-6x^{2}-15x+16
|
critical f(x)=4x^3-7x
|
critical\:f(x)=4x^{3}-7x
|
inflection points f(x)= x/(x^2-10x+34)
|
inflection\:points\:f(x)=\frac{x}{x^{2}-10x+34}
|
critical 1
|
critical\:1
|
critical f(x)=4x^3-8x
|
critical\:f(x)=4x^{3}-8x
|
critical x^6ln(x)
|
critical\:x^{6}\ln(x)
|
critical-2x^3-9x^2-12x+1
|
critical\:-2x^{3}-9x^{2}-12x+1
|
critical f(x)=7x^2-8x
|
critical\:f(x)=7x^{2}-8x
|
critical f(x)=x^{4/5}(x^2-7)
|
critical\:f(x)=x^{\frac{4}{5}}(x^{2}-7)
|
critical y=x^4+6x^3+12x^2+8x+10
|
critical\:y=x^{4}+6x^{3}+12x^{2}+8x+10
|
f(x,y)=(x^2+y^2)e^{-(x^2+y^2)}
|
f(x,y)=(x^{2}+y^{2})e^{-(x^{2}+y^{2})}
|
critical y=x-ln(x)
|
critical\:y=x-\ln(x)
|
critical f(x,y)=x^3+3xy^2+y^3-15y-15x
|
critical\:f(x,y)=x^{3}+3xy^{2}+y^{3}-15y-15x
|
inverse f(x)=3+\sqrt[3]{x+2}
|
inverse\:f(x)=3+\sqrt[3]{x+2}
|
critical f(x)=x^6-3x^2+2
|
critical\:f(x)=x^{6}-3x^{2}+2
|
critical f(x)=x^2+4
|
critical\:f(x)=x^{2}+4
|
critical f(x)=sin(x),-π/2 <= x<= (5π)/6
|
critical\:f(x)=\sin(x),-\frac{π}{2}\le\:x\le\:\frac{5π}{6}
|
critical f(x)=2+12x-x^3
|
critical\:f(x)=2+12x-x^{3}
|
critical f(x)=x(1-1/3 x)-xy
|
critical\:f(x)=x(1-\frac{1}{3}x)-xy
|
f(x)=3In(6-2x)
|
f(x)=3In(6-2x)
|