critical f(x)=x^2+(128)/x
|
critical\:f(x)=x^{2}+\frac{128}{x}
|
critical f(x)=x^4-32x^2
|
critical\:f(x)=x^{4}-32x^{2}
|
critical f(x)=5ax-2x^2
|
critical\:f(x)=5ax-2x^{2}
|
critical (6x^2+2x-3)/(x-4)
|
critical\:\frac{6x^{2}+2x-3}{x-4}
|
critical f(x)=2x^3+3x^2-72x+7
|
critical\:f(x)=2x^{3}+3x^{2}-72x+7
|
inverse f(x)=(x^3-1)/3
|
inverse\:f(x)=\frac{x^{3}-1}{3}
|
critical xe^{6x^2}
|
critical\:xe^{6x^{2}}
|
critical f(x)=x(x-6)
|
critical\:f(x)=x(x-6)
|
critical f(x)=x^6e^x-8
|
critical\:f(x)=x^{6}e^{x}-8
|
f(x,y)=xy^3-x^2
|
f(x,y)=xy^{3}-x^{2}
|
critical f(x,y)=sqrt(8x+10y-x^2-y^2-39)
|
critical\:f(x,y)=\sqrt{8x+10y-x^{2}-y^{2}-39}
|
critical f(x)=x^{-1/3}(x-6)
|
critical\:f(x)=x^{-\frac{1}{3}}(x-6)
|
critical t^4-8t^2-9
|
critical\:t^{4}-8t^{2}-9
|
f(x,y)=100+x^3-y^3
|
f(x,y)=100+x^{3}-y^{3}
|
critical x|x|
|
critical\:x\left|x\right|
|
critical 9xln(x)
|
critical\:9x\ln(x)
|
inverse f(x)=\sqrt[3]{x+3}-3
|
inverse\:f(x)=\sqrt[3]{x+3}-3
|
critical f(x)=5x^2sqrt(x+1)
|
critical\:f(x)=5x^{2}\sqrt{x+1}
|
critical f(x)=(3x^2)/(x^2+25)
|
critical\:f(x)=\frac{3x^{2}}{x^{2}+25}
|
critical f(x)=9x^2+2y^2-xy^2
|
critical\:f(x)=9x^{2}+2y^{2}-xy^{2}
|
critical f(x)=4x^{1/3}-8x^{4/3}
|
critical\:f(x)=4x^{\frac{1}{3}}-8x^{\frac{4}{3}}
|
critical 4xsqrt(100-x^2)
|
critical\:4x\sqrt{100-x^{2}}
|
critical f(x)=ln(x^3)-9x
|
critical\:f(x)=\ln(x^{3})-9x
|
critical f(x)=x^{2/3}(x-3)^2
|
critical\:f(x)=x^{\frac{2}{3}}(x-3)^{2}
|
critical f(x)=3x+5
|
critical\:f(x)=3x+5
|
critical y=x^2+1/(x^2)
|
critical\:y=x^{2}+\frac{1}{x^{2}}
|
critical F(x)=x^{4/5}(x-9)^2
|
critical\:F(x)=x^{\frac{4}{5}}(x-9)^{2}
|
parity (4x)/(3-cot(x))
|
parity\:\frac{4x}{3-\cot(x)}
|
critical x^3-6x+5
|
critical\:x^{3}-6x+5
|
critical x^3-6x+2
|
critical\:x^{3}-6x+2
|
critical f(x)=2xsqrt(4-x^2)
|
critical\:f(x)=2x\sqrt{4-x^{2}}
|
critical f(x)=e^{x^2-9x-1}
|
critical\:f(x)=e^{x^{2}-9x-1}
|
critical 3y-2y^2-3xy
|
critical\:3y-2y^{2}-3xy
|
critical x^3-2
|
critical\:x^{3}-2
|
critical f(x)=x^4-4x^3-62x^2+132x+189
|
critical\:f(x)=x^{4}-4x^{3}-62x^{2}+132x+189
|
critical-x^2-2x+3
|
critical\:-x^{2}-2x+3
|
critical 9x+1/x
|
critical\:9x+\frac{1}{x}
|
critical 6x^3-18x+10
|
critical\:6x^{3}-18x+10
|
slope intercept-6x=2y+2
|
slope\:intercept\:-6x=2y+2
|
critical f(x)= x/((x-1))
|
critical\:f(x)=\frac{x}{(x-1)}
|
critical f(x)=4x^3-36x
|
critical\:f(x)=4x^{3}-36x
|
critical 3cos(π(x+2))-1
|
critical\:3\cos(π(x+2))-1
|
critical (x^2-x)/(8x^2+1)
|
critical\:\frac{x^{2}-x}{8x^{2}+1}
|
critical f(x)=ln(27+8x^3)
|
critical\:f(x)=\ln(27+8x^{3})
|
critical f(x)=((4x))/((x^2-25))
|
critical\:f(x)=\frac{(4x)}{(x^{2}-25)}
|
critical f(x)= x/(x^2+7)
|
critical\:f(x)=\frac{x}{x^{2}+7}
|
f(x,y)=x^4+y^4-4x^2y^2
|
f(x,y)=x^{4}+y^{4}-4x^{2}y^{2}
|
critical f(x)= 1/((2x-3)^3)
|
critical\:f(x)=\frac{1}{(2x-3)^{3}}
|
critical f(y)=x^3-3x^2-45x+2
|
critical\:f(y)=x^{3}-3x^{2}-45x+2
|
inverse (2x)/(x-4)
|
inverse\:\frac{2x}{x-4}
|
critical points f(x)=sqrt(x^2+6)
|
critical\:points\:f(x)=\sqrt{x^{2}+6}
|
critical f(x)= 4/(x^2+1)
|
critical\:f(x)=\frac{4}{x^{2}+1}
|
critical f(x)=6-x
|
critical\:f(x)=6-x
|
critical (4x^2)/(x^2+3)
|
critical\:\frac{4x^{2}}{x^{2}+3}
|
critical f(x)=5x-19y
|
critical\:f(x)=5x-19y
|
critical 3x^2-xy+2y^3
|
critical\:3x^{2}-xy+2y^{3}
|
critical f(x)=(-3x^2-4x)/(e^x)
|
critical\:f(x)=\frac{-3x^{2}-4x}{e^{x}}
|
critical f(x)=xln(x)-x
|
critical\:f(x)=x\ln(x)-x
|
critical f(x)=2sec(x)-tan(x)
|
critical\:f(x)=2\sec(x)-\tan(x)
|
critical f(x)=(x^2-3x+5)e^{(-x)/3}
|
critical\:f(x)=(x^{2}-3x+5)e^{\frac{-x}{3}}
|
critical f(x)=-2x^3+15x^2-36x+7
|
critical\:f(x)=-2x^{3}+15x^{2}-36x+7
|
symmetry x=y^2
|
symmetry\:x=y^{2}
|
critical f(x,y)=-x^3+6xy-3y^2+5
|
critical\:f(x,y)=-x^{3}+6xy-3y^{2}+5
|
critical (x-3)^3-x^2+6
|
critical\:(x-3)^{3}-x^{2}+6
|
critical (26x)/((x^2+4)^2)
|
critical\:\frac{26x}{(x^{2}+4)^{2}}
|
critical 4θ-tan(θ)
|
critical\:4θ-\tan(θ)
|
critical f(x)=x+10sqrt(7-x)
|
critical\:f(x)=x+10\sqrt{7-x}
|
critical f(x,y)=x^2y+2xy^2-8x+4
|
critical\:f(x,y)=x^{2}y+2xy^{2}-8x+4
|
critical f(x)=-(x^3)/3+16x
|
critical\:f(x)=-\frac{x^{3}}{3}+16x
|
critical-1/3 x+3
|
critical\:-\frac{1}{3}x+3
|
critical f(x)=4x^2-4x+1
|
critical\:f(x)=4x^{2}-4x+1
|
critical f(x)=2xy
|
critical\:f(x)=2xy
|
inverse f(x)=(x+1)/(2x+1)
|
inverse\:f(x)=\frac{x+1}{2x+1}
|
critical g(y)=(y-6)/(y^2-2y+12)
|
critical\:g(y)=\frac{y-6}{y^{2}-2y+12}
|
critical f(x)= 1/2 x^{-(1/2)}+1/2
|
critical\:f(x)=\frac{1}{2}x^{-(\frac{1}{2})}+\frac{1}{2}
|
critical f(x)=(3x+2x^2)/(e^x)
|
critical\:f(x)=\frac{3x+2x^{2}}{e^{x}}
|
critical (5*x)/(x^2-16)
|
critical\:\frac{5\cdot\:x}{x^{2}-16}
|
critical f(x)=sin(x),0<= x<= 2π
|
critical\:f(x)=\sin(x),0\le\:x\le\:2π
|
critical f(x)=3x^2+20x+25
|
critical\:f(x)=3x^{2}+20x+25
|
critical y=(sqrt(x))/(a+x^2)
|
critical\:y=\frac{\sqrt{x}}{a+x^{2}}
|
critical f(x)=2x^3-12x^2+6
|
critical\:f(x)=2x^{3}-12x^{2}+6
|
critical f(x)=x^{7/3}+x^{4/3}-3x^{1/3}
|
critical\:f(x)=x^{\frac{7}{3}}+x^{\frac{4}{3}}-3x^{\frac{1}{3}}
|
critical f(x)=2x^2+3xy+y^2+ax+5
|
critical\:f(x)=2x^{2}+3xy+y^{2}+ax+5
|
range f(x)=2x^2+4
|
range\:f(x)=2x^{2}+4
|
critical f(x)= 1/13 x^{13}-a^{12}x
|
critical\:f(x)=\frac{1}{13}x^{13}-a^{12}x
|
critical f(x)=(x^2-16)^{1/3}
|
critical\:f(x)=(x^{2}-16)^{\frac{1}{3}}
|
critical ln(3x^2)
|
critical\:\ln(3x^{2})
|
critical f(x)=x^3+x+4/x
|
critical\:f(x)=x^{3}+x+\frac{4}{x}
|
critical f(x)=x^4-8x^3
|
critical\:f(x)=x^{4}-8x^{3}
|
f(x,y)=px^2+y^2-9
|
f(x,y)=px^{2}+y^{2}-9
|
critical (2-x)^3
|
critical\:(2-x)^{3}
|
critical f(x)=2x^2+5x-3
|
critical\:f(x)=2x^{2}+5x-3
|
P(x,y)=x^5y+2x^4y^2+x^3y^3
|
P(x,y)=x^{5}y+2x^{4}y^{2}+x^{3}y^{3}
|
critical f(x)=(e^x)/(1-e^x)
|
critical\:f(x)=\frac{e^{x}}{1-e^{x}}
|
extreme points f(x)=-2x^2-16x-25
|
extreme\:points\:f(x)=-2x^{2}-16x-25
|
f(x,y)=x^4+y^4+8y^3+6x^2y^2
|
f(x,y)=x^{4}+y^{4}+8y^{3}+6x^{2}y^{2}
|
critical f(x)=4-x^2
|
critical\:f(x)=4-x^{2}
|
critical f(x)=x^3-5x^2+3x+12
|
critical\:f(x)=x^{3}-5x^{2}+3x+12
|
critical y=x^{-1}e^x
|
critical\:y=x^{-1}e^{x}
|
critical f(x)=3x+sin(3x)
|
critical\:f(x)=3x+\sin(3x)
|