critical f(x)=(2x)/(3(x^2-1)^{2/3)}
|
critical\:f(x)=\frac{2x}{3(x^{2}-1)^{\frac{2}{3}}}
|
critical (x^3)/3+(x^2)/2-2x+9
|
critical\:\frac{x^{3}}{3}+\frac{x^{2}}{2}-2x+9
|
critical f(x)=(x-2)^3(x+4)^2
|
critical\:f(x)=(x-2)^{3}(x+4)^{2}
|
critical f(x)=6sec(x)+3tan(x)
|
critical\:f(x)=6\sec(x)+3\tan(x)
|
critical f(x,y)=x+8y+1/(xy)
|
critical\:f(x,y)=x+8y+\frac{1}{xy}
|
asymptotes f(x)=4^{x-2}
|
asymptotes\:f(x)=4^{x-2}
|
critical f(x,y)=-x^2+y^2+2x+4y+7
|
critical\:f(x,y)=-x^{2}+y^{2}+2x+4y+7
|
critical (x^2+3)/(x-1)
|
critical\:\frac{x^{2}+3}{x-1}
|
critical sqrt(|x|)+x/8
|
critical\:\sqrt{\left|x\right|}+\frac{x}{8}
|
f(x)=(x^2-y^2)(x^2+y^2)
|
f(x)=(x^{2}-y^{2})(x^{2}+y^{2})
|
critical (300)/(1+9e^{-0.4t)}
|
critical\:\frac{300}{1+9e^{-0.4t}}
|
critical 2sec(x)+tan(x)
|
critical\:2\sec(x)+\tan(x)
|
critical f(x)=x^{6/7}-x^{13/7}
|
critical\:f(x)=x^{\frac{6}{7}}-x^{\frac{13}{7}}
|
critical f(x)=x^3-12x+10
|
critical\:f(x)=x^{3}-12x+10
|
critical f(x)=cos^2(x)-sin(x)
|
critical\:f(x)=\cos^{2}(x)-\sin(x)
|
critical f(x)=ln(e^{-x}(x^2+3)^2)
|
critical\:f(x)=\ln(e^{-x}(x^{2}+3)^{2})
|
extreme points 3xsqrt(4x^2+2)
|
extreme\:points\:3x\sqrt{4x^{2}+2}
|
critical 5-6x^2-2x^3
|
critical\:5-6x^{2}-2x^{3}
|
critical f(x,y)=2x^2+2xy+2y^2-6x
|
critical\:f(x,y)=2x^{2}+2xy+2y^{2}-6x
|
critical 25x+(16)/x
|
critical\:25x+\frac{16}{x}
|
critical f(x)=x^3-2x^2-4x+3
|
critical\:f(x)=x^{3}-2x^{2}-4x+3
|
critical f(x)=x^3-2x^2-4x+8
|
critical\:f(x)=x^{3}-2x^{2}-4x+8
|
critical x^2-8x+6ln(x)
|
critical\:x^{2}-8x+6\ln(x)
|
critical f(x)=e^{x^2ln(x)-(x^2)/2}
|
critical\:f(x)=e^{x^{2}\ln(x)-\frac{x^{2}}{2}}
|
critical 4x^3-12x^2-124x+132
|
critical\:4x^{3}-12x^{2}-124x+132
|
critical f(x)=x^4-10x^2
|
critical\:f(x)=x^{4}-10x^{2}
|
critical g(t)=tln(t)
|
critical\:g(t)=t\ln(t)
|
sin(3x)
|
\sin(3x)
|
critical f(x)=-x^3+3x-2
|
critical\:f(x)=-x^{3}+3x-2
|
critical f(x)=-x^3+3x-1
|
critical\:f(x)=-x^{3}+3x-1
|
critical f(x)=2x^3+3x^2-120x
|
critical\:f(x)=2x^{3}+3x^{2}-120x
|
critical cos(2x)-x
|
critical\:\cos(2x)-x
|
f(x,y)=y^2sqrt(9+x^2)
|
f(x,y)=y^{2}\sqrt{9+x^{2}}
|
critical 2x^3+3x^2-36x+90
|
critical\:2x^{3}+3x^{2}-36x+90
|
critical f(x)=x^4-4x^3-2
|
critical\:f(x)=x^{4}-4x^{3}-2
|
critical (x^2-3)/(x^3)
|
critical\:\frac{x^{2}-3}{x^{3}}
|
critical 4x^3-8
|
critical\:4x^{3}-8
|
critical x^{4/5}-2
|
critical\:x^{\frac{4}{5}}-2
|
inverse f(x)=3x+10
|
inverse\:f(x)=3x+10
|
domain f(x)=sqrt(x+3)-2
|
domain\:f(x)=\sqrt{x+3}-2
|
critical (3x^2)/((x^2-4))
|
critical\:\frac{3x^{2}}{(x^{2}-4)}
|
critical f(x)=-1/5
|
critical\:f(x)=-\frac{1}{5}
|
critical+x^2+6x+5
|
critical\:+x^{2}+6x+5
|
critical (x^2-7)/(x-4)
|
critical\:\frac{x^{2}-7}{x-4}
|
critical f(x)=3x^2+18x+24
|
critical\:f(x)=3x^{2}+18x+24
|
critical 6xsqrt(100-x^2)
|
critical\:6x\sqrt{100-x^{2}}
|
critical f(x)=3x^2+18x+15
|
critical\:f(x)=3x^{2}+18x+15
|
critical (x^4-3x^2)/((x^2-1)^2)
|
critical\:\frac{x^{4}-3x^{2}}{(x^{2}-1)^{2}}
|
critical f(x)=x^3-15/2 x^2+12x
|
critical\:f(x)=x^{3}-\frac{15}{2}x^{2}+12x
|
critical f(x)=4x^3-24x^2
|
critical\:f(x)=4x^{3}-24x^{2}
|
asymptotes f(x)=(x-5)/(x+1)
|
asymptotes\:f(x)=\frac{x-5}{x+1}
|
critical f(x)=-2sin(x)
|
critical\:f(x)=-2\sin(x)
|
critical f(x)=6+1/5 x-1/2 x^2
|
critical\:f(x)=6+\frac{1}{5}x-\frac{1}{2}x^{2}
|
critical f(y)=sqrt(x)-1/(sqrt(x))
|
critical\:f(y)=\sqrt{x}-\frac{1}{\sqrt{x}}
|
critical f(x)=x^2-22x+6
|
critical\:f(x)=x^{2}-22x+6
|
critical f(x)= 2/3 x^3-1/2 x^2-15x+2
|
critical\:f(x)=\frac{2}{3}x^{3}-\frac{1}{2}x^{2}-15x+2
|
critical f(x)= x/(x^2+8x+12)
|
critical\:f(x)=\frac{x}{x^{2}+8x+12}
|
critical x^3-3x(y-2)+(y-2)^3
|
critical\:x^{3}-3x(y-2)+(y-2)^{3}
|
critical (x^2-8x)(y^2-2y)
|
critical\:(x^{2}-8x)(y^{2}-2y)
|
critical f(x)=(x^2(x-4))/(x+6)
|
critical\:f(x)=\frac{x^{2}(x-4)}{x+6}
|
critical f(x)=12x^5+45x^4-360x^3+7
|
critical\:f(x)=12x^{5}+45x^{4}-360x^{3}+7
|
inverse f(x)= 4/(3x+1)
|
inverse\:f(x)=\frac{4}{3x+1}
|
critical (e^{-4x}(-11e^x+11e^{2x}-e^{3x}+1))/((1+e^{-x))^5}
|
critical\:\frac{e^{-4x}(-11e^{x}+11e^{2x}-e^{3x}+1)}{(1+e^{-x})^{5}}
|
critical x^3-6x^2+9x+5
|
critical\:x^{3}-6x^{2}+9x+5
|
critical f(x)=9x^4+8x^3
|
critical\:f(x)=9x^{4}+8x^{3}
|
critical y=(-cos(2x))/2-2sin(x)
|
critical\:y=\frac{-\cos(2x)}{2}-2\sin(x)
|
critical f(x)=7(x-3)^{2/3}
|
critical\:f(x)=7(x-3)^{\frac{2}{3}}
|
critical f(x)=ln(x^3-3x^2+4)
|
critical\:f(x)=\ln(x^{3}-3x^{2}+4)
|
critical-294x+2x^3+6xy^2-3y^3
|
critical\:-294x+2x^{3}+6xy^{2}-3y^{3}
|
critical f(x,y)= 1/x-(64)/y+xy
|
critical\:f(x,y)=\frac{1}{x}-\frac{64}{y}+xy
|
critical f(x)=((x^{(2)}-2x+4))/((x-2))
|
critical\:f(x)=\frac{(x^{(2)}-2x+4)}{(x-2)}
|
critical x^{2/3}(x^2+x-3/2)
|
critical\:x^{\frac{2}{3}}(x^{2}+x-\frac{3}{2})
|
intercepts 3x^2-8x-3
|
intercepts\:3x^{2}-8x-3
|
critical f(x,y)=x^3+y^2-3x^2+10y+6
|
critical\:f(x,y)=x^{3}+y^{2}-3x^{2}+10y+6
|
critical f(x)=6+81x-3x^3
|
critical\:f(x)=6+81x-3x^{3}
|
critical f(x,y)=x^2+3xy+3y^2-6x+3y-6
|
critical\:f(x,y)=x^{2}+3xy+3y^{2}-6x+3y-6
|
critical f(x)=(30+x)(190-5x)
|
critical\:f(x)=(30+x)(190-5x)
|
critical 6*sin(8x-2)
|
critical\:6\cdot\:\sin(8x-2)
|
critical f(x)=x^4+16x^3+54x^2+2
|
critical\:f(x)=x^{4}+16x^{3}+54x^{2}+2
|
f(x)= 1/3 x^3-xy^2+y^2
|
f(x)=\frac{1}{3}x^{3}-xy^{2}+y^{2}
|
critical (5x^2)/(x^2-9)
|
critical\:\frac{5x^{2}}{x^{2}-9}
|
critical g(x)=x^3-26x^2
|
critical\:g(x)=x^{3}-26x^{2}
|
f(x,y)=sqrt(1-x^2-y^2)+xy
|
f(x,y)=\sqrt{1-x^{2}-y^{2}}+xy
|
asymptotes f(x)=((x^2-2x))/((x^2-4))
|
asymptotes\:f(x)=\frac{(x^{2}-2x)}{(x^{2}-4)}
|
critical f(x)=\sqrt[3]{36-x^2}
|
critical\:f(x)=\sqrt[3]{36-x^{2}}
|
critical (6e^x)/(6e^x+4)
|
critical\:\frac{6e^{x}}{6e^{x}+4}
|
critical f(x)=5+x+5/x
|
critical\:f(x)=5+x+\frac{5}{x}
|
critical f(x)=x^3+x^2-20x
|
critical\:f(x)=x^{3}+x^{2}-20x
|
critical f(x)=2x^3-36x^2+120x-5
|
critical\:f(x)=2x^{3}-36x^{2}+120x-5
|
critical f(x)=((x^2-1))/(x^2+3x-4)
|
critical\:f(x)=\frac{(x^{2}-1)}{x^{2}+3x-4}
|
critical f(x,y)=x^4+y^4-196xy
|
critical\:f(x,y)=x^{4}+y^{4}-196xy
|
critical (ln(x))/(x^6)
|
critical\:\frac{\ln(x)}{x^{6}}
|
critical f(x)=x^3-2y^2-2y^4+3x^2y
|
critical\:f(x)=x^{3}-2y^{2}-2y^{4}+3x^{2}y
|
critical f(x)=x(x-2)
|
critical\:f(x)=x(x-2)
|
intercepts y=2x-4
|
intercepts\:y=2x-4
|
critical f(x)=x(x-3)
|
critical\:f(x)=x(x-3)
|
critical f(x)=(x-1)^3(x-2)^2
|
critical\:f(x)=(x-1)^{3}(x-2)^{2}
|
critical x^2+2x-6
|
critical\:x^{2}+2x-6
|
critical x/(x^2+11x+28)
|
critical\:\frac{x}{x^{2}+11x+28}
|
critical f(x)= 3/(x^2+1)
|
critical\:f(x)=\frac{3}{x^{2}+1}
|