y=3x^3-3
|
y=3x^{3}-3
|
f(t)=te^{2t}sin(6t)
|
f(t)=te^{2t}\sin(6t)
|
f(x)=(x+1)/5
|
f(x)=\frac{x+1}{5}
|
y=4x^2+5x-1
|
y=4x^{2}+5x-1
|
domain of log_{2}(x+1)
|
domain\:\log_{2}(x+1)
|
y=x^3-3x-2
|
y=x^{3}-3x-2
|
f(x)=(x-3)(x+5)
|
f(x)=(x-3)(x+5)
|
f(x)=(x-3)(x-4)
|
f(x)=(x-3)(x-4)
|
f(u)=u^3
|
f(u)=u^{3}
|
f(x)=3125x^{2/5}
|
f(x)=3125x^{\frac{2}{5}}
|
g(x)=-4
|
g(x)=-4
|
g(x)=-5
|
g(x)=-5
|
f(x)=2(x-1)^2-5
|
f(x)=2(x-1)^{2}-5
|
y=|2x|-1
|
y=\left|2x\right|-1
|
f(k)=k^3-27
|
f(k)=k^{3}-27
|
midpoint (-2,1)(-2,-4)
|
midpoint\:(-2,1)(-2,-4)
|
f(x)=3x^3-x+1
|
f(x)=3x^{3}-x+1
|
y=6log_{7}(5x+3)-6
|
y=6\log_{7}(5x+3)-6
|
f(x)=9x+14
|
f(x)=9x+14
|
f(x)=xcos(x)+sin(x)
|
f(x)=x\cos(x)+\sin(x)
|
y=3x^2-x
|
y=3x^{2}-x
|
f(x)=9x-10
|
f(x)=9x-10
|
f(x)=log_{10}(5)x^2
|
f(x)=\log_{10}(5)x^{2}
|
y=x+x^2
|
y=x+x^{2}
|
f(x)=2x^2+4x-4
|
f(x)=2x^{2}+4x-4
|
f(x)=-log_{2}(x+2)
|
f(x)=-\log_{2}(x+2)
|
midpoint (-9,2)(5,5)
|
midpoint\:(-9,2)(5,5)
|
y=x^2-12x-45
|
y=x^{2}-12x-45
|
y=\sqrt[3]{x-5}
|
y=\sqrt[3]{x-5}
|
y=1-|x|
|
y=1-\left|x\right|
|
f(n)=10n^3-18n^2+40n-72
|
f(n)=10n^{3}-18n^{2}+40n-72
|
f(x)=3x^2-2x-5
|
f(x)=3x^{2}-2x-5
|
y=4x^2+1
|
y=4x^{2}+1
|
f(x)=ln((1+x^2)/(1-x^2))
|
f(x)=\ln(\frac{1+x^{2}}{1-x^{2}})
|
f(x)=-2x^5+x^4+5x^3+4x+1
|
f(x)=-2x^{5}+x^{4}+5x^{3}+4x+1
|
y=-2(x+5)^2+4
|
y=-2(x+5)^{2}+4
|
g(x)=-2x^2+16x+3
|
g(x)=-2x^{2}+16x+3
|
extreme points of f(x)=x^3-3x^2
|
extreme\:points\:f(x)=x^{3}-3x^{2}
|
slope intercept of y-4=-3(x-3)
|
slope\:intercept\:y-4=-3(x-3)
|
g(x)=x^2-3x
|
g(x)=x^{2}-3x
|
(x+1)(x+2)
|
(x+1)(x+2)
|
y=2*(1/3)^x
|
y=2\cdot\:(\frac{1}{3})^{x}
|
y= 5/4 x-2
|
y=\frac{5}{4}x-2
|
f(x)=(1/2)^{x+2}
|
f(x)=(\frac{1}{2})^{x+2}
|
f(x)=x^2-14x+49
|
f(x)=x^{2}-14x+49
|
y=(x-2)^3+1
|
y=(x-2)^{3}+1
|
f(x)=e^{2x}cos(3x)
|
f(x)=e^{2x}\cos(3x)
|
y=10x-2
|
y=10x-2
|
f(t)=8t
|
f(t)=8t
|
slope of 6x+5y=30
|
slope\:6x+5y=30
|
f(x)=2x^2+2x-7
|
f(x)=2x^{2}+2x-7
|
y=log_{10}(sin(x/a))
|
y=\log_{10}(\sin(\frac{x}{a}))
|
y=3x^2+6x-12
|
y=3x^{2}+6x-12
|
y=sin(2)(x+pi/2)
|
y=\sin(2)(x+\frac{π}{2})
|
x^2-2x
|
x^{2}-2x
|
y=(x+1)
|
y=(x+1)
|
f(x)=2csc^2(x)
|
f(x)=2\csc^{2}(x)
|
f(x)=sqrt(x^2-4x)
|
f(x)=\sqrt{x^{2}-4x}
|
f(x)=(sqrt(25-x^2))/(x^2-16)
|
f(x)=\frac{\sqrt{25-x^{2}}}{x^{2}-16}
|
f(x)=3x^2-4x+4
|
f(x)=3x^{2}-4x+4
|
domain of f(x)= 9/(sqrt(t))
|
domain\:f(x)=\frac{9}{\sqrt{t}}
|
f(x)=x^3-x^2-x+8
|
f(x)=x^{3}-x^{2}-x+8
|
f(x,y)=sin(x)
|
f(x,y)=\sin(x)
|
f(x)=x^2+4x+15
|
f(x)=x^{2}+4x+15
|
y=(x-4)^2-9
|
y=(x-4)^{2}-9
|
f(x)=(x^2)/(2x-2|x|)
|
f(x)=\frac{x^{2}}{2x-2\left|x\right|}
|
f(x)= 1/(x+8)
|
f(x)=\frac{1}{x+8}
|
f(x)=e^x-2x
|
f(x)=e^{x}-2x
|
f(x)=32x
|
f(x)=32x
|
f(x)=2x^2+5x-6
|
f(x)=2x^{2}+5x-6
|
f(x)=0.5
|
f(x)=0.5
|
range of-3/(|x+2|)
|
range\:-\frac{3}{|x+2|}
|
y=sqrt(6-x)
|
y=\sqrt{6-x}
|
f(x)=4x^3+16x^2-45x+23
|
f(x)=4x^{3}+16x^{2}-45x+23
|
f(x)= 2/3
|
f(x)=\frac{2}{3}
|
y=12x-5
|
y=12x-5
|
f(x)=x(x+1)(x-2)
|
f(x)=x(x+1)(x-2)
|
f(x)=3x^2-3x+4
|
f(x)=3x^{2}-3x+4
|
f(x)= 1/(6x)
|
f(x)=\frac{1}{6x}
|
f(x)=8x^5-4x^3+3x^2-2
|
f(x)=8x^{5}-4x^{3}+3x^{2}-2
|
f(b)= 2/(b^2)
|
f(b)=\frac{2}{b^{2}}
|
y=x^2e^{-x^2}
|
y=x^{2}e^{-x^{2}}
|
f(θ)= 2/(2-cos(θ))
|
f(θ)=\frac{2}{2-\cos(θ)}
|
f(t)=tsqrt(4-t)
|
f(t)=t\sqrt{4-t}
|
y=-1/2 x-8
|
y=-\frac{1}{2}x-8
|
f(x)=3x^2-6x+9
|
f(x)=3x^{2}-6x+9
|
f(x)=2x^2+8x-7
|
f(x)=2x^{2}+8x-7
|
y=8x-11
|
y=8x-11
|
f(x)=\sqrt[3]{4-9x}
|
f(x)=\sqrt[3]{4-9x}
|
y= x/(x+3)
|
y=\frac{x}{x+3}
|
y=x^{8x}
|
y=x^{8x}
|
f(I)=2I
|
f(I)=2I
|
domain of (t-2)/(t+2)
|
domain\:\frac{t-2}{t+2}
|
f(t)=e^{-2t}(3cos(6t)-5sin(6t))
|
f(t)=e^{-2t}(3\cos(6t)-5\sin(6t))
|
f(n)=2(n-2)^3
|
f(n)=2(n-2)^{3}
|
y= x/2+3
|
y=\frac{x}{2}+3
|
f(x)=3x^{12}
|
f(x)=3x^{12}
|
f(x)=-4x^2-4x+3
|
f(x)=-4x^{2}-4x+3
|
f(x)=4x^3+25x^2-3x-6
|
f(x)=4x^{3}+25x^{2}-3x-6
|
f(x)=-7^x
|
f(x)=-7^{x}
|