critical e^{x^2-5x}
|
critical\:e^{x^{2}-5x}
|
critical f(x)=-3x^2+12
|
critical\:f(x)=-3x^{2}+12
|
critical xy+(e^y)/(y^2+1)
|
critical\:xy+\frac{e^{y}}{y^{2}+1}
|
critical f(x)=πx^2sqrt(9-x^2)
|
critical\:f(x)=πx^{2}\sqrt{9-x^{2}}
|
critical f(x,y)=x^2+y^2+xy+1
|
critical\:f(x,y)=x^{2}+y^{2}+xy+1
|
domain f(x)=(x+2)/(x^2+6x+8)
|
domain\:f(x)=\frac{x+2}{x^{2}+6x+8}
|
critical f(x)=4x^3-15x^2-72x+5
|
critical\:f(x)=4x^{3}-15x^{2}-72x+5
|
critical f(x)=3x^4-8x^3+10
|
critical\:f(x)=3x^{4}-8x^{3}+10
|
critical y=x^3-5/2 x^2-2x
|
critical\:y=x^{3}-\frac{5}{2}x^{2}-2x
|
critical f(x)=x^3+5
|
critical\:f(x)=x^{3}+5
|
critical (x-2)^3(x+1)
|
critical\:(x-2)^{3}(x+1)
|
critical ((x^2-1))/(x^2-4)
|
critical\:\frac{(x^{2}-1)}{x^{2}-4}
|
critical f(x)=x^3+4.5x^2-12x-2
|
critical\:f(x)=x^{3}+4.5x^{2}-12x-2
|
critical 1/(x^2+9)
|
critical\:\frac{1}{x^{2}+9}
|
critical f(x)=(x-a)(x+a)^3
|
critical\:f(x)=(x-a)(x+a)^{3}
|
critical f(x)=3x^3-9xy+3y^3
|
critical\:f(x)=3x^{3}-9xy+3y^{3}
|
perpendicular y=-8x+7,\at (5,-3)
|
perpendicular\:y=-8x+7,\at\:(5,-3)
|
critical f(x,y)=x^2+2axy+y^2
|
critical\:f(x,y)=x^{2}+2axy+y^{2}
|
critical f(x)=4x^3-33x^2-240x+9
|
critical\:f(x)=4x^{3}-33x^{2}-240x+9
|
critical f(x)=-10x^2+8xy+32x-2y^2
|
critical\:f(x)=-10x^{2}+8xy+32x-2y^{2}
|
critical f(x)=sqrt(x^3+8x)x>0
|
critical\:f(x)=\sqrt{x^{3}+8x}x>0
|
critical 2/(x^2+4)
|
critical\:\frac{2}{x^{2}+4}
|
critical (x+5)^{2/3}
|
critical\:(x+5)^{\frac{2}{3}}
|
critical f(x)=-2x^2ln(x)+21x^2
|
critical\:f(x)=-2x^{2}\ln(x)+21x^{2}
|
critical x^2-2x+3
|
critical\:x^{2}-2x+3
|
f(x)=3x^2y+y^3-3x^2+2
|
f(x)=3x^{2}y+y^{3}-3x^{2}+2
|
critical f(x)= 1/4 x^4-1/3 x^3-3x^2
|
critical\:f(x)=\frac{1}{4}x^{4}-\frac{1}{3}x^{3}-3x^{2}
|
extreme points f(x)=3x^4-30x^2+27
|
extreme\:points\:f(x)=3x^{4}-30x^{2}+27
|
critical points f(x)=x^4-12x^3+16x^2
|
critical\:points\:f(x)=x^{4}-12x^{3}+16x^{2}
|
critical f(x)=(5x^2)/((x^2-16))
|
critical\:f(x)=\frac{5x^{2}}{(x^{2}-16)}
|
critical f(x)=x^3+2xy-6x-4y^2
|
critical\:f(x)=x^{3}+2xy-6x-4y^{2}
|
critical f(x)=x^3-26x^2
|
critical\:f(x)=x^{3}-26x^{2}
|
critical 3+2x-x^2
|
critical\:3+2x-x^{2}
|
critical f(x)=(2x+1)/(x-1)
|
critical\:f(x)=\frac{2x+1}{x-1}
|
critical f(x)=(x+8)/(x+2)
|
critical\:f(x)=\frac{x+8}{x+2}
|
critical f(x)=(x-3)/(x-5)
|
critical\:f(x)=\frac{x-3}{x-5}
|
critical f(x)=x^5-2x^3+1
|
critical\:f(x)=x^{5}-2x^{3}+1
|
critical 3x^2+1
|
critical\:3x^{2}+1
|
critical f(x)=3x-3/2 x^{2/3}
|
critical\:f(x)=3x-\frac{3}{2}x^{\frac{2}{3}}
|
parity f(x)=(x+7)/(x^3-3x^2+5x+2)
|
parity\:f(x)=\frac{x+7}{x^{3}-3x^{2}+5x+2}
|
critical f(x)=x^2+3y^2+4x-9y+3
|
critical\:f(x)=x^{2}+3y^{2}+4x-9y+3
|
critical f(x)=x^2+4xy-10x+y^2-8y+1
|
critical\:f(x)=x^{2}+4xy-10x+y^{2}-8y+1
|
critical f(x)=(x^2-5x)(y^2-6y)
|
critical\:f(x)=(x^{2}-5x)(y^{2}-6y)
|
critical f(x)=\sqrt[3]{x+1}
|
critical\:f(x)=\sqrt[3]{x+1}
|
critical f(x)=((x+1))/(x^2-5x+4)
|
critical\:f(x)=\frac{(x+1)}{x^{2}-5x+4}
|
critical y=sin^2(x)
|
critical\:y=\sin^{2}(x)
|
critical g(x)3x^2-6x-24
|
critical\:g(x)3x^{2}-6x-24
|
critical f(x)=xsqrt(x-8)
|
critical\:f(x)=x\sqrt{x-8}
|
critical 5x^2+5y^2+5xy-10x-5y+18
|
critical\:5x^{2}+5y^{2}+5xy-10x-5y+18
|
f(x,y)=x^3+y^4-6x-4y+5
|
f(x,y)=x^{3}+y^{4}-6x-4y+5
|
domain (x+2)/(x-5)
|
domain\:\frac{x+2}{x-5}
|
critical xe^{1/x}
|
critical\:xe^{\frac{1}{x}}
|
critical (1-x)/(2sqrt(x)(1+x)^2)
|
critical\:\frac{1-x}{2\sqrt{x}(1+x)^{2}}
|
critical f(x)=x^3-2x^2-35x
|
critical\:f(x)=x^{3}-2x^{2}-35x
|
critical f(x)=4
|
critical\:f(x)=4
|
critical x/(x^2+3x+2)
|
critical\:\frac{x}{x^{2}+3x+2}
|
critical 4/(x^3)
|
critical\:\frac{4}{x^{3}}
|
critical f(x)=x^2-12x+9
|
critical\:f(x)=x^{2}-12x+9
|
critical f(x)=x^2-12x+1
|
critical\:f(x)=x^{2}-12x+1
|
critical f(x)=(e^x+e^{-x})/5
|
critical\:f(x)=\frac{e^{x}+e^{-x}}{5}
|
critical f(x)=-(2x)/((x^2-1)^2)
|
critical\:f(x)=-\frac{2x}{(x^{2}-1)^{2}}
|
inflection points 5x^4-30x^2
|
inflection\:points\:5x^{4}-30x^{2}
|
critical f(x,y)=10+2x^4-8x^2+4xy-y^2
|
critical\:f(x,y)=10+2x^{4}-8x^{2}+4xy-y^{2}
|
critical f(x)=x^{1/3}(2x^2-8)
|
critical\:f(x)=x^{\frac{1}{3}}(2x^{2}-8)
|
critical f(x)=-x^2+14x
|
critical\:f(x)=-x^{2}+14x
|
critical f(x)=cos((πx)/2)
|
critical\:f(x)=\cos(\frac{πx}{2})
|
critical 3x^5+5x^3
|
critical\:3x^{5}+5x^{3}
|
critical f(x)=1+1/x-1/(x^2)
|
critical\:f(x)=1+\frac{1}{x}-\frac{1}{x^{2}}
|
critical f(x)=(e^x+e^{-x})/2
|
critical\:f(x)=\frac{e^{x}+e^{-x}}{2}
|
critical f(x)=12x^5+60x^4-240x^3+6
|
critical\:f(x)=12x^{5}+60x^{4}-240x^{3}+6
|
critical 4+x^3+y^3-3xy
|
critical\:4+x^{3}+y^{3}-3xy
|
critical f(x)=20cos(x)+10sin^2(x)
|
critical\:f(x)=20\cos(x)+10\sin^{2}(x)
|
domain f(x)=sqrt(((t+1))/t)
|
domain\:f(x)=\sqrt{\frac{(t+1)}{t}}
|
critical y=2x^2-64sqrt(x)
|
critical\:y=2x^{2}-64\sqrt{x}
|
critical x^4+11x^3+34x^2+15x-2
|
critical\:x^{4}+11x^{3}+34x^{2}+15x-2
|
critical 4-x^2
|
critical\:4-x^{2}
|
critical f(x)=x^2(x-1)^{2/3}
|
critical\:f(x)=x^{2}(x-1)^{\frac{2}{3}}
|
critical f(x,y)=(x-1)^2+(y-2)^2-1
|
critical\:f(x,y)=(x-1)^{2}+(y-2)^{2}-1
|
critical (-x+2)/(x^3)
|
critical\:\frac{-x+2}{x^{3}}
|
critical f(x)=2x^3-3x^2-12x+12
|
critical\:f(x)=2x^{3}-3x^{2}-12x+12
|
critical 10x^3e^x
|
critical\:10x^{3}e^{x}
|
critical f(x,y)=5x^3+2y^4-20x-3y
|
critical\:f(x,y)=5x^{3}+2y^{4}-20x-3y
|
critical f(x)=tsqrt(16-t)
|
critical\:f(x)=t\sqrt{16-t}
|
domain f(x)=-x-5
|
domain\:f(x)=-x-5
|
critical f(x)=x^{1/3}-x^{2/3}
|
critical\:f(x)=x^{\frac{1}{3}}-x^{\frac{2}{3}}
|
critical xsqrt(9-x)
|
critical\:x\sqrt{9-x}
|
critical f(x)=(4x)/(25-x^2)
|
critical\:f(x)=\frac{4x}{25-x^{2}}
|
critical f(x,y)=6xy-x^2y-xy^2
|
critical\:f(x,y)=6xy-x^{2}y-xy^{2}
|
critical f(x)=x^3+3x^2-9x+y^3-12y
|
critical\:f(x)=x^{3}+3x^{2}-9x+y^{3}-12y
|
critical 6x^2+6x-12
|
critical\:6x^{2}+6x-12
|
critical f(x)=x^3-3x+9
|
critical\:f(x)=x^{3}-3x+9
|
critical (x+1)e^{-x}
|
critical\:(x+1)e^{-x}
|
critical f(x)=x^{1/3}(x-8)
|
critical\:f(x)=x^{\frac{1}{3}}(x-8)
|
critical f(x)=x^2-xy+y^2+8
|
critical\:f(x)=x^{2}-xy+y^{2}+8
|
extreme points f(x)=sqrt(-x^2+6x+16)
|
extreme\:points\:f(x)=\sqrt{-x^{2}+6x+16}
|
critical f(x)=x^2-xy+y^2+7
|
critical\:f(x)=x^{2}-xy+y^{2}+7
|
f(x)=(3x^2+1)/2-x(x^2+y^2)
|
f(x)=\frac{3x^{2}+1}{2}-x(x^{2}+y^{2})
|
critical f(x)=(-8x^2+24x)/((x-2)^2(x-6)^2)
|
critical\:f(x)=\frac{-8x^{2}+24x}{(x-2)^{2}(x-6)^{2}}
|
f(x)=2x^3+7y^9
|
f(x)=2x^{3}+7y^{9}
|
critical f(x)=e^x(x^2-8)-2xe^x
|
critical\:f(x)=e^{x}(x^{2}-8)-2xe^{x}
|