f(x)=x^3-4x-1
|
f(x)=x^{3}-4x-1
|
g(x)=2x-6
|
g(x)=2x-6
|
y=(x^2-1)/(x^2-3x+2)
|
y=\frac{x^{2}-1}{x^{2}-3x+2}
|
y=(x^4)/(16)
|
y=\frac{x^{4}}{16}
|
f(x)=(\sqrt[3]{x})/5-3/(\sqrt[3]{x)}
|
f(x)=\frac{\sqrt[3]{x}}{5}-\frac{3}{\sqrt[3]{x}}
|
midpoint (-8,-1),(2,-8)
|
midpoint\:(-8,-1),(2,-8)
|
f(x)=((sin(x)))/x
|
f(x)=\frac{(\sin(x))}{x}
|
f(x)=x^2+9x-8
|
f(x)=x^{2}+9x-8
|
f(x)=x^2+9x-5
|
f(x)=x^{2}+9x-5
|
f(x)=x^2+9x+3
|
f(x)=x^{2}+9x+3
|
f(x)=(e^x)/(x^4)
|
f(x)=\frac{e^{x}}{x^{4}}
|
y=x^2-8x+2
|
y=x^{2}-8x+2
|
r(θ)=5cos(3θ)
|
r(θ)=5\cos(3θ)
|
f(x)=(2x-3)/(x-1)
|
f(x)=\frac{2x-3}{x-1}
|
f(x)=x^2+x+0.5
|
f(x)=x^{2}+x+0.5
|
f(x)=cot^3(x)
|
f(x)=\cot^{3}(x)
|
inverse of (5x-4)/(7x+3)
|
inverse\:\frac{5x-4}{7x+3}
|
y=(x+7)^2-5
|
y=(x+7)^{2}-5
|
y=-(x+3)^2+2
|
y=-(x+3)^{2}+2
|
f(x)=cos^2(x)-sin(x)
|
f(x)=\cos^{2}(x)-\sin(x)
|
g(x)=5x-2
|
g(x)=5x-2
|
f(x)=sqrt(5x+5)
|
f(x)=\sqrt{5x+5}
|
f(x)=-3cos(pix)
|
f(x)=-3\cos(πx)
|
f(x)=-sin(x^3)
|
f(x)=-\sin(x^{3})
|
y=-x^2-8x-13
|
y=-x^{2}-8x-13
|
f(x)=sqrt(x+1)-sqrt(x-1)
|
f(x)=\sqrt{x+1}-\sqrt{x-1}
|
f(x)=(3x^2-8x-3)/(2x^2+7x-4)
|
f(x)=\frac{3x^{2}-8x-3}{2x^{2}+7x-4}
|
inverse of f(x)=2x+3y=6
|
inverse\:f(x)=2x+3y=6
|
f(x)=8^{x+3}
|
f(x)=8^{x+3}
|
f(x)=(x^3)/4-3x
|
f(x)=\frac{x^{3}}{4}-3x
|
f(x)=sin((sqrt(e^x+3))/2)
|
f(x)=\sin(\frac{\sqrt{e^{x}+3}}{2})
|
f(y)=y^9
|
f(y)=y^{9}
|
y=3x+30
|
y=3x+30
|
f(x)=(4x-6)/(-x+2)
|
f(x)=\frac{4x-6}{-x+2}
|
r(θ)=2csc(θ)
|
r(θ)=2\csc(θ)
|
y=x^3-x^2-2x
|
y=x^{3}-x^{2}-2x
|
y=7x+7
|
y=7x+7
|
y=cos^4(x)
|
y=\cos^{4}(x)
|
slope intercept of 3x+y=1
|
slope\:intercept\:3x+y=1
|
f(y)=3y+2
|
f(y)=3y+2
|
f(y)=3y-4
|
f(y)=3y-4
|
f(x)=x^2+6x+20
|
f(x)=x^{2}+6x+20
|
y=-x^2+4x-6
|
y=-x^{2}+4x-6
|
y=-x^2+4x-7
|
y=-x^{2}+4x-7
|
f(x)=-2x^2+4x-2
|
f(x)=-2x^{2}+4x-2
|
f(x)=(2-x)/3
|
f(x)=\frac{2-x}{3}
|
f(θ)=cos(θ)sec^2(θ)sin(θ)cot(θ)
|
f(θ)=\cos(θ)\sec^{2}(θ)\sin(θ)\cot(θ)
|
f(x)=-2x^2-2
|
f(x)=-2x^{2}-2
|
f(x)=2^{-1}
|
f(x)=2^{-1}
|
critical points of 2y^3-3y^2-12y+6
|
critical\:points\:2y^{3}-3y^{2}-12y+6
|
f(x)=2\sqrt[4]{x}
|
f(x)=2\sqrt[4]{x}
|
y=2x^2+8
|
y=2x^{2}+8
|
e^x,x^2-1,x=-1,x=1
|
e^{x},x^{2}-1,x=-1,x=1
|
y= 3/4 x+1/2
|
y=\frac{3}{4}x+\frac{1}{2}
|
y=cos(x^4)
|
y=\cos(x^{4})
|
f(y)=2y-1
|
f(y)=2y-1
|
f(x)=x^2-81
|
f(x)=x^{2}-81
|
f(x)=sqrt(2+e^{2x)+e^{-2x}}
|
f(x)=\sqrt{2+e^{2x}+e^{-2x}}
|
f(x)=x^2-3x-20
|
f(x)=x^{2}-3x-20
|
f(m)=m^2-16
|
f(m)=m^{2}-16
|
critical points of f(x)=x^2-2x
|
critical\:points\:f(x)=x^{2}-2x
|
y=x^3-4x^2-x+4
|
y=x^{3}-4x^{2}-x+4
|
f(x)=2x^2-2x
|
f(x)=2x^{2}-2x
|
y=4*(1/2)^x
|
y=4\cdot\:(\frac{1}{2})^{x}
|
f(x)= 1/4 x^4-1/3 x^3-x^2
|
f(x)=\frac{1}{4}x^{4}-\frac{1}{3}x^{3}-x^{2}
|
y=3\sqrt[3]{x}
|
y=3\sqrt[3]{x}
|
f(x)=x^2+13
|
f(x)=x^{2}+13
|
y=sqrt(t-5)
|
y=\sqrt{t-5}
|
f(x)= x/(x^2+3x)
|
f(x)=\frac{x}{x^{2}+3x}
|
y=-1/4 x-4
|
y=-\frac{1}{4}x-4
|
f(x)=x^2-1.7x+0.7
|
f(x)=x^{2}-1.7x+0.7
|
domain of sin^{-1}(x)
|
domain\:\sin^{-1}(x)
|
f(x)=(-4x+12)/(x^2-3x)
|
f(x)=\frac{-4x+12}{x^{2}-3x}
|
y= 3/4 x+6
|
y=\frac{3}{4}x+6
|
f(x)=((x^2-1))/x
|
f(x)=\frac{(x^{2}-1)}{x}
|
y=(x-2)(x-6)
|
y=(x-2)(x-6)
|
g(x)=x^3+1
|
g(x)=x^{3}+1
|
f(x)=sqrt(3-4x)
|
f(x)=\sqrt{3-4x}
|
f(x)=x^3+6x^2+7x-2cos(x)
|
f(x)=x^{3}+6x^{2}+7x-2\cos(x)
|
s(t)=-16t^2+48t+160
|
s(t)=-16t^{2}+48t+160
|
y=-2x^2+6x
|
y=-2x^{2}+6x
|
f(x)=-2x^2+5x-2
|
f(x)=-2x^{2}+5x-2
|
domain of 2/(2x+8)
|
domain\:\frac{2}{2x+8}
|
f(x)=tan(x+pi/4)
|
f(x)=\tan(x+\frac{π}{4})
|
f(x)=2-ln(x)
|
f(x)=2-\ln(x)
|
f(x)=3^x-6
|
f(x)=3^{x}-6
|
f(x)=tan(2x+1)
|
f(x)=\tan(2x+1)
|
f(x)=x^3+4x^2-10
|
f(x)=x^{3}+4x^{2}-10
|
y=x^2+7x+1
|
y=x^{2}+7x+1
|
y=4*2^x
|
y=4\cdot\:2^{x}
|
y=-1/2 x+1/2
|
y=-\frac{1}{2}x+\frac{1}{2}
|
f(n)= n/(ln(n))
|
f(n)=\frac{n}{\ln(n)}
|
f(x)=5sin(x)+4
|
f(x)=5\sin(x)+4
|
slope of 8x+4y=2
|
slope\:8x+4y=2
|
f(x)=sqrt(2/x+3x^3)
|
f(x)=\sqrt{\frac{2}{x}+3x^{3}}
|
p(x)=x^3-2x^2-5x+6
|
p(x)=x^{3}-2x^{2}-5x+6
|
f(x)=-2x^2+8x+3
|
f(x)=-2x^{2}+8x+3
|
f(x)=(x^2+2x-1)/(2x-1)
|
f(x)=\frac{x^{2}+2x-1}{2x-1}
|
p(z)=z^8+1
|
p(z)=z^{8}+1
|
f(x)=x^3+5x-1
|
f(x)=x^{3}+5x-1
|