y=2x^2+8x+6
|
y=2x^{2}+8x+6
|
g(x)=6x^2
|
g(x)=6x^{2}
|
f(x)=2(x+3)^2-8
|
f(x)=2(x+3)^{2}-8
|
f(n)=2n-5
|
f(n)=2n-5
|
y=x^4-2x^2+2
|
y=x^{4}-2x^{2}+2
|
f(x)=-2sin^2(x)
|
f(x)=-2\sin^{2}(x)
|
y=ln((2+x)/(2-x))
|
y=\ln(\frac{2+x}{2-x})
|
f(x)=x(ln(x))
|
f(x)=x(\ln(x))
|
f(x)=cos(arctan(x))
|
f(x)=\cos(\arctan(x))
|
y=2x^2+16
|
y=2x^{2}+16
|
y=2x^2+14
|
y=2x^{2}+14
|
f(x)=2x^3+3x^2-12x+5
|
f(x)=2x^{3}+3x^{2}-12x+5
|
y=-2x^2+6
|
y=-2x^{2}+6
|
f(n)=3n-5
|
f(n)=3n-5
|
f(n)=3n-2
|
f(n)=3n-2
|
f(x)=-3x-8
|
f(x)=-3x-8
|
y=(cos(x))/(1-sin(x))
|
y=\frac{\cos(x)}{1-\sin(x)}
|
f(x)=sqrt(x^2+2x-8)
|
f(x)=\sqrt{x^{2}+2x-8}
|
inverse of g(x)=9-x^2
|
inverse\:g(x)=9-x^{2}
|
f(x)= 1/(x^2-2x-3)
|
f(x)=\frac{1}{x^{2}-2x-3}
|
f(x)=5x^3-4
|
f(x)=5x^{3}-4
|
f(x)= 1/(x^2-2x+1)
|
f(x)=\frac{1}{x^{2}-2x+1}
|
f(x)=-2(x+4)^2+3
|
f(x)=-2(x+4)^{2}+3
|
y=5x+14
|
y=5x+14
|
y=-2+x
|
y=-2+x
|
g(x)=3x^2-24x+67
|
g(x)=3x^{2}-24x+67
|
y=-3/2 x+12
|
y=-\frac{3}{2}x+12
|
y=(x+k)^{-1}
|
y=(x+k)^{-1}
|
f(x)=x^2+sqrt(x-1)
|
f(x)=x^{2}+\sqrt{x-1}
|
midpoint (2,5)(8,1)
|
midpoint\:(2,5)(8,1)
|
f(x)=x^2-22x+84
|
f(x)=x^{2}-22x+84
|
f(x)=-3x^3+25x^2+14x-16-10x^4-x^5
|
f(x)=-3x^{3}+25x^{2}+14x-16-10x^{4}-x^{5}
|
y=-2x+16
|
y=-2x+16
|
y=-2x+18
|
y=-2x+18
|
f(x)=(7x)/(sqrt(6)-3x)
|
f(x)=\frac{7x}{\sqrt{6}-3x}
|
f(x)=ln(tan(2x))
|
f(x)=\ln(\tan(2x))
|
g(x)=10^x
|
g(x)=10^{x}
|
f(x)=64
|
f(x)=64
|
y=(x^2-x)^3
|
y=(x^{2}-x)^{3}
|
f(x)=sin^2(pix)
|
f(x)=\sin^{2}(πx)
|
symmetry (x^2+1)/x
|
symmetry\:\frac{x^{2}+1}{x}
|
f(x)=27
|
f(x)=27
|
f(x)=sqrt(x+3)-4
|
f(x)=\sqrt{x+3}-4
|
f(x)= 1/x+2arctan(x)
|
f(x)=\frac{1}{x}+2\arctan(x)
|
f(x)=x^2-18x+85
|
f(x)=x^{2}-18x+85
|
f(x)= x/(x^2+7)
|
f(x)=\frac{x}{x^{2}+7}
|
f(x)=x^4+2x
|
f(x)=x^{4}+2x
|
g(x)=-3|x+5|
|
g(x)=-3\left|x+5\right|
|
f(x)=e^x-4x^2
|
f(x)=e^{x}-4x^{2}
|
f(x)=-5x+5
|
f(x)=-5x+5
|
f(x)=-5x-7
|
f(x)=-5x-7
|
critical points of cos(pi x)pi
|
critical\:points\:\cos(\pi\:x)\pi
|
f(x)=x\times 5
|
f(x)=x\times\:5
|
f(x)= 1/5 x^5-3x^4+9x^2+1
|
f(x)=\frac{1}{5}x^{5}-3x^{4}+9x^{2}+1
|
f(x)=(2x+1)^{1/2}
|
f(x)=(2x+1)^{\frac{1}{2}}
|
y=4+x^2
|
y=4+x^{2}
|
y=x^2-4x-6
|
y=x^{2}-4x-6
|
f(x)=-2/3 x+5
|
f(x)=-\frac{2}{3}x+5
|
f(n)=5n+2
|
f(n)=5n+2
|
f(m)=16m+15m^2-15
|
f(m)=16m+15m^{2}-15
|
f(x)=tan(x)+sin(x)
|
f(x)=\tan(x)+\sin(x)
|
h(x)=x^3-7x^2+14x-8
|
h(x)=x^{3}-7x^{2}+14x-8
|
intercepts of 2x^2-x+2
|
intercepts\:2x^{2}-x+2
|
f(x)=-6x+1
|
f(x)=-6x+1
|
f(x)=|x-1|-1
|
f(x)=\left|x-1\right|-1
|
f(x)=2-x-x^2
|
f(x)=2-x-x^{2}
|
f(x)=(x+2)(x-1)^2
|
f(x)=(x+2)(x-1)^{2}
|
y=(x^3)/3+(x^2)/2-6x+8
|
y=\frac{x^{3}}{3}+\frac{x^{2}}{2}-6x+8
|
y=10sin(2pix+pi)
|
y=10\sin(2πx+π)
|
g(x)=(-5x-1)(2x+8)
|
g(x)=(-5x-1)(2x+8)
|
f(x)=|x+2|+1
|
f(x)=\left|x+2\right|+1
|
f(x)=(3x^2)/(x+5)
|
f(x)=\frac{3x^{2}}{x+5}
|
y=(sin(x))/(e^x)
|
y=\frac{\sin(x)}{e^{x}}
|
periodicity of 2sin(x)
|
periodicity\:2\sin(x)
|
f(x)=(x^2-2)/(x-1)
|
f(x)=\frac{x^{2}-2}{x-1}
|
f(x)=sin(sin(2x))
|
f(x)=\sin(\sin(2x))
|
f(x)=cos(5x)+cos(3x)
|
f(x)=\cos(5x)+\cos(3x)
|
f(x)=(x+2)/(2x)
|
f(x)=\frac{x+2}{2x}
|
f(X)= 1/X
|
f(X)=\frac{1}{X}
|
y=(4x-1)/(5x+3)
|
y=\frac{4x-1}{5x+3}
|
y=-2x^2+6x+8
|
y=-2x^{2}+6x+8
|
f(x)= 5/(1+x)
|
f(x)=\frac{5}{1+x}
|
f(x)=x^2+7x-2
|
f(x)=x^{2}+7x-2
|
line (-1,-4),(2,-4)
|
line\:(-1,-4),(2,-4)
|
f(x)=-x^2+6x-12
|
f(x)=-x^{2}+6x-12
|
f(y)=sqrt(16-y^2)
|
f(y)=\sqrt{16-y^{2}}
|
f(x)=arctan(sqrt(3x))
|
f(x)=\arctan(\sqrt{3x})
|
y=tan(x^2)
|
y=\tan(x^{2})
|
f(cos(x))=sin^2(x)-tan^2(x)
|
f(\cos(x))=\sin^{2}(x)-\tan^{2}(x)
|
f(x)=-8x+3
|
f(x)=-8x+3
|
f(x)=|5-x|
|
f(x)=\left|5-x\right|
|
y=5-8x
|
y=5-8x
|
f(x)=x^7(5+8x)^3
|
f(x)=x^{7}(5+8x)^{3}
|
f(x)=2(x^2+x-2)(x^2+2x+5)
|
f(x)=2(x^{2}+x-2)(x^{2}+2x+5)
|
inverse of tan(x)
|
inverse\:\tan(x)
|
f(x)=(2x+3)/(3x-7)
|
f(x)=\frac{2x+3}{3x-7}
|
f(x)=(2x+3)/(3x+2)
|
f(x)=\frac{2x+3}{3x+2}
|
f(x)=x^3-5x+1
|
f(x)=x^{3}-5x+1
|
f(t)=(1+tan(t))/(1+cot(t))
|
f(t)=\frac{1+\tan(t)}{1+\cot(t)}
|
f(θ)=sec(θ)-tan(θ)
|
f(θ)=\sec(θ)-\tan(θ)
|