critical f(x)=3x^2-8x+4
|
critical\:f(x)=3x^{2}-8x+4
|
critical 1-1/(x^{2/3)}
|
critical\:1-\frac{1}{x^{\frac{2}{3}}}
|
critical f(x)=x^4-2x^2-8
|
critical\:f(x)=x^{4}-2x^{2}-8
|
critical (4x)/(x^2-36)
|
critical\:\frac{4x}{x^{2}-36}
|
inverse y=sin(x)
|
inverse\:y=\sin(x)
|
critical f(x)=5+54x-2x^3
|
critical\:f(x)=5+54x-2x^{3}
|
critical f(x)=(ln(x^2))/x
|
critical\:f(x)=\frac{\ln(x^{2})}{x}
|
critical (x^2-6x)^{2/3}
|
critical\:(x^{2}-6x)^{\frac{2}{3}}
|
critical f(x)=x|x|
|
critical\:f(x)=x\left|x\right|
|
critical f(x)=x^3+3x^2-24x+12
|
critical\:f(x)=x^{3}+3x^{2}-24x+12
|
critical f(x)=sqrt((x-4)^2+1+3)
|
critical\:f(x)=\sqrt{(x-4)^{2}+1+3}
|
critical f(x,y)=2x+y-xy+190
|
critical\:f(x,y)=2x+y-xy+190
|
critical y=6x-6
|
critical\:y=6x-6
|
critical (9-x)(9-y)(x+y-9)
|
critical\:(9-x)(9-y)(x+y-9)
|
critical f(x)=4x^5-5x^4+4
|
critical\:f(x)=4x^{5}-5x^{4}+4
|
inverse f(x)=((3x-1))/6
|
inverse\:f(x)=\frac{(3x-1)}{6}
|
critical f(x)= x/(4-x^2)
|
critical\:f(x)=\frac{x}{4-x^{2}}
|
critical f(x)=(x^2+3)/(x^3-9)
|
critical\:f(x)=\frac{x^{2}+3}{x^{3}-9}
|
critical f(x,y)=(3x)/(64+x^2+y^2)
|
critical\:f(x,y)=\frac{3x}{64+x^{2}+y^{2}}
|
critical f(x)=e^{ax^2+4}
|
critical\:f(x)=e^{ax^{2}+4}
|
critical (x^2)/(1+x^2)
|
critical\:\frac{x^{2}}{1+x^{2}}
|
critical (x-4)/(x^2)
|
critical\:\frac{x-4}{x^{2}}
|
critical f(x)=((x^2-4))/(1-x^2)
|
critical\:f(x)=\frac{(x^{2}-4)}{1-x^{2}}
|
critical f(x)=8x^2log_{10}(x)
|
critical\:f(x)=8x^{2}\log_{10}(x)
|
critical f(x)=15x^2+10x-5
|
critical\:f(x)=15x^{2}+10x-5
|
critical f(x)=(2x)/(x^2-9)
|
critical\:f(x)=\frac{2x}{x^{2}-9}
|
midpoint (2,-3)(8,7)
|
midpoint\:(2,-3)(8,7)
|
critical f(θ)=16cos(θ)+8sin^2(θ)
|
critical\:f(θ)=16\cos(θ)+8\sin^{2}(θ)
|
critical f(x)= x/(1x^2-1)
|
critical\:f(x)=\frac{x}{1x^{2}-1}
|
critical f(x)=x^2+3x-8
|
critical\:f(x)=x^{2}+3x-8
|
critical f(x,y)=2x^2+xy^3-6xy+5x+2
|
critical\:f(x,y)=2x^{2}+xy^{3}-6xy+5x+2
|
critical f(x)=32x^2e^{-0.125x}
|
critical\:f(x)=32x^{2}e^{-0.125x}
|
critical f(x)=x^2+xy+y^2-6x+2
|
critical\:f(x)=x^{2}+xy+y^{2}-6x+2
|
critical f(x)=2x^2-5xy+3y^4+5
|
critical\:f(x)=2x^{2}-5xy+3y^{4}+5
|
critical f(x)=x^3-12x-3
|
critical\:f(x)=x^{3}-12x-3
|
critical (4-x)^9(x-15)^9 1/((x+34)^6)
|
critical\:(4-x)^{9}(x-15)^{9}\frac{1}{(x+34)^{6}}
|
critical x^2+(16)/x
|
critical\:x^{2}+\frac{16}{x}
|
domain (x-2)/(3x+5)
|
domain\:\frac{x-2}{3x+5}
|
critical x^3-sqrt(x+1)
|
critical\:x^{3}-\sqrt{x+1}
|
critical f(x)=x^2e^{19x}
|
critical\:f(x)=x^{2}e^{19x}
|
critical y=4x^4-5x^3+4
|
critical\:y=4x^{4}-5x^{3}+4
|
critical f(x)=x^3-3x^2-105x+3
|
critical\:f(x)=x^{3}-3x^{2}-105x+3
|
critical 2x^3+9xy^2+15x^2+27y^2
|
critical\:2x^{3}+9xy^{2}+15x^{2}+27y^{2}
|
critical f(x)=x^3-2x+4
|
critical\:f(x)=x^{3}-2x+4
|
critical f(x,y)=xy(x^2+y^2-1)
|
critical\:f(x,y)=xy(x^{2}+y^{2}-1)
|
critical f(x)=3x^3-6x-y^2+y
|
critical\:f(x)=3x^{3}-6x-y^{2}+y
|
critical f(x)= 1/4 x^4-1/3 x^3-6x^2
|
critical\:f(x)=\frac{1}{4}x^{4}-\frac{1}{3}x^{3}-6x^{2}
|
critical f(x)=(2(3x^2+1))/((x^2-1)^3)
|
critical\:f(x)=\frac{2(3x^{2}+1)}{(x^{2}-1)^{3}}
|
parallel y= 1/2-7
|
parallel\:y=\frac{1}{2}-7
|
critical f(x)=9x+9x^{-1}
|
critical\:f(x)=9x+9x^{-1}
|
critical (4e^{4x})/(3x-15)
|
critical\:\frac{4e^{4x}}{3x-15}
|
critical 2x^3-15x^2+y^3+6y^2
|
critical\:2x^{3}-15x^{2}+y^{3}+6y^{2}
|
critical-7(x+3)^2(x-1)(x-5)
|
critical\:-7(x+3)^{2}(x-1)(x-5)
|
critical f(x)=((5x^2))/(x^2+16)
|
critical\:f(x)=\frac{(5x^{2})}{x^{2}+16}
|
critical (x^2-3)^2
|
critical\:(x^{2}-3)^{2}
|
critical f(x,y)=x^3-y^3-3x^2-3y^2-2
|
critical\:f(x,y)=x^{3}-y^{3}-3x^{2}-3y^{2}-2
|
critical (2x)/(x^2-25)
|
critical\:\frac{2x}{x^{2}-25}
|
critical f(x)=sqrt(x^2-3x+6)
|
critical\:f(x)=\sqrt{x^{2}-3x+6}
|
f(x,y)=x^8+2y^6
|
f(x,y)=x^{8}+2y^{6}
|
asymptotes f(x)=(x-2)/(x+2)
|
asymptotes\:f(x)=\frac{x-2}{x+2}
|
critical f(x)=x^3-6x^2+9
|
critical\:f(x)=x^{3}-6x^{2}+9
|
critical f(x)=-3x^3+6x^2
|
critical\:f(x)=-3x^{3}+6x^{2}
|
critical 2x^3-6x+4
|
critical\:2x^{3}-6x+4
|
critical f(x)=(x+1)/(-x^3+3x^2+x-3)+3
|
critical\:f(x)=\frac{x+1}{-x^{3}+3x^{2}+x-3}+3
|
critical f(x)=x^4+x^2+3
|
critical\:f(x)=x^{4}+x^{2}+3
|
critical x^2y-xy^2
|
critical\:x^{2}y-xy^{2}
|
critical f(x)= x/(x^2+12x+32)
|
critical\:f(x)=\frac{x}{x^{2}+12x+32}
|
critical y=2x+3
|
critical\:y=2x+3
|
critical f(θ)=10cos(θ)+5sin^2(θ)
|
critical\:f(θ)=10\cos(θ)+5\sin^{2}(θ)
|
critical f(x)=(6x)/(3+x^2)
|
critical\:f(x)=\frac{6x}{3+x^{2}}
|
asymptotes f(x)=(2x+6)/(x+3)
|
asymptotes\:f(x)=\frac{2x+6}{x+3}
|
y=InX
|
y=InX
|
critical y= 1/(x^2-4)
|
critical\:y=\frac{1}{x^{2}-4}
|
critical f(x)=tsqrt(9-t^2)
|
critical\:f(x)=t\sqrt{9-t^{2}}
|
critical 6x^4+8x^3
|
critical\:6x^{4}+8x^{3}
|
critical f(x)=x+6sqrt(3-x)
|
critical\:f(x)=x+6\sqrt{3-x}
|
f(x,y)=2mx^3-3x^2y-3y^2
|
f(x,y)=2mx^{3}-3x^{2}y-3y^{2}
|
critical f(x)= 1/5 x^5-a^4x
|
critical\:f(x)=\frac{1}{5}x^{5}-a^{4}x
|
critical f(x)=x(110-x)
|
critical\:f(x)=x(110-x)
|
critical 12x^2-24
|
critical\:12x^{2}-24
|
critical f(x)=x^4(x-6)^2
|
critical\:f(x)=x^{4}(x-6)^{2}
|
extreme points y=sqrt(x)+3
|
extreme\:points\:y=\sqrt{x}+3
|
critical 3x^2-10x+3
|
critical\:3x^{2}-10x+3
|
critical 2x^2y-2xy+2y^2-6y
|
critical\:2x^{2}y-2xy+2y^{2}-6y
|
critical f(x)=-3x^2+2
|
critical\:f(x)=-3x^{2}+2
|
critical 12x^2+2x^3
|
critical\:12x^{2}+2x^{3}
|
critical f(x)=((x^2-4))/((x^2-1))
|
critical\:f(x)=\frac{(x^{2}-4)}{(x^{2}-1)}
|
critical y=x^{6/7}(x^2-2)
|
critical\:y=x^{\frac{6}{7}}(x^{2}-2)
|
critical f(x)=((x^4+4))/(x^2)
|
critical\:f(x)=\frac{(x^{4}+4)}{x^{2}}
|
critical f(x)=2x^3-33x^2+180x-7
|
critical\:f(x)=2x^{3}-33x^{2}+180x-7
|
critical g(x)=(x^3)/(x+1)
|
critical\:g(x)=\frac{x^{3}}{x+1}
|
critical-(2(x^2+1))/(e^{x^2)x^3}
|
critical\:-\frac{2(x^{2}+1)}{e^{x^{2}}x^{3}}
|
asymptotes f(x)=4*x^2-3*x-12
|
asymptotes\:f(x)=4\cdot\:x^{2}-3\cdot\:x-12
|
slope-7x+7
|
slope\:-7x+7
|
critical sin(6x),0<= x<= π/2
|
critical\:\sin(6x),0\le\:x\le\:\frac{π}{2}
|
critical-(2(x^2-1))/(x^2-4)
|
critical\:-\frac{2(x^{2}-1)}{x^{2}-4}
|
critical f(x)= x/(2x^2+1)
|
critical\:f(x)=\frac{x}{2x^{2}+1}
|
critical f(x,y)=(3x+4x^3)(y^2+2y)
|
critical\:f(x,y)=(3x+4x^{3})(y^{2}+2y)
|
critical x^3-2x
|
critical\:x^{3}-2x
|
critical f(x)=6x^3+x^2+6x
|
critical\:f(x)=6x^{3}+x^{2}+6x
|