critical 2e^{-x}x-e^{-x}x^2
|
critical\:2e^{-x}x-e^{-x}x^{2}
|
critical x*e^x
|
critical\:x\cdot\:e^{x}
|
critical f(x)=25x^3-7x
|
critical\:f(x)=25x^{3}-7x
|
critical f(x)=((x^3))/((x+1))
|
critical\:f(x)=\frac{(x^{3})}{(x+1)}
|
parity (sec^2(x))/(3ln(2)tan(x))
|
parity\:\frac{\sec^{2}(x)}{3\ln(2)\tan(x)}
|
critical f(x)=\sqrt[3]{x}(8-x)
|
critical\:f(x)=\sqrt[3]{x}(8-x)
|
critical f(x)=2sqrt(x)-4x^2
|
critical\:f(x)=2\sqrt{x}-4x^{2}
|
critical (-x^3-x+5)/(2x^3+3x^2-7)
|
critical\:\frac{-x^{3}-x+5}{2x^{3}+3x^{2}-7}
|
critical tsqrt(4-t^2)
|
critical\:t\sqrt{4-t^{2}}
|
critical f(x)=12x^2-144x+288
|
critical\:f(x)=12x^{2}-144x+288
|
critical f(x)=x^3+3x^2+b
|
critical\:f(x)=x^{3}+3x^{2}+b
|
critical e^{(2x^2+5y^2-2x-2y)}
|
critical\:e^{(2x^{2}+5y^{2}-2x-2y)}
|
critical log_{10}(x)
|
critical\:\log_{10}(x)
|
critical f(x)=1-|x+2|
|
critical\:f(x)=1-\left|x+2\right|
|
critical f(x)=4x^3-3x^4
|
critical\:f(x)=4x^{3}-3x^{4}
|
asymptotes e^{-x}-1
|
asymptotes\:e^{-x}-1
|
critical f(x)=y^2x-yx^2+xy
|
critical\:f(x)=y^{2}x-yx^{2}+xy
|
critical f(x)=2x^3-6x^2-18x+7
|
critical\:f(x)=2x^{3}-6x^{2}-18x+7
|
critical f(x)=(6x^2-24x)/((x-2)^2)
|
critical\:f(x)=\frac{6x^{2}-24x}{(x-2)^{2}}
|
critical f(x,y)= 1/3 x^3+1/3 y^3-x-y+10
|
critical\:f(x,y)=\frac{1}{3}x^{3}+\frac{1}{3}y^{3}-x-y+10
|
critical f(x)=12x^2-96x+144
|
critical\:f(x)=12x^{2}-96x+144
|
critical f(x)=sqrt(36+x^2)+sqrt(164+x^2-20x)
|
critical\:f(x)=\sqrt{36+x^{2}}+\sqrt{164+x^{2}-20x}
|
critical x/(x^2-x)
|
critical\:\frac{x}{x^{2}-x}
|
critical 4x^3-x^4
|
critical\:4x^{3}-x^{4}
|
critical f(x)=x^5-25x^4+250x^3-1250x^2+3125x-3125
|
critical\:f(x)=x^{5}-25x^{4}+250x^{3}-1250x^{2}+3125x-3125
|
critical f(x)=x^5e^{-7x}
|
critical\:f(x)=x^{5}e^{-7x}
|
intercepts sin(12x)
|
intercepts\:\sin(12x)
|
critical f(x)=(6e^x)/(6e^x+2)
|
critical\:f(x)=\frac{6e^{x}}{6e^{x}+2}
|
critical f(x)=10x^3e^x
|
critical\:f(x)=10x^{3}e^{x}
|
critical (x^2-1)/(4x-5)
|
critical\:\frac{x^{2}-1}{4x-5}
|
critical f(x)=y=x^3-6x^2+9x
|
critical\:f(x)=y=x^{3}-6x^{2}+9x
|
critical (x^2-1)e^{-ax}
|
critical\:(x^{2}-1)e^{-ax}
|
critical f(x,y)=x^2y-2xy^2+3xy+4
|
critical\:f(x,y)=x^{2}y-2xy^{2}+3xy+4
|
critical f(x)=(-9)/((x^2-9)sqrt(x^2-9))
|
critical\:f(x)=\frac{-9}{(x^{2}-9)\sqrt{x^{2}-9}}
|
critical f(x,y)=x^2-4xy+y^2
|
critical\:f(x,y)=x^{2}-4xy+y^{2}
|
critical f(x)=4(x-4)^{2/3}
|
critical\:f(x)=4(x-4)^{\frac{2}{3}}
|
critical (-2x)/((1+x^2)^2)
|
critical\:\frac{-2x}{(1+x^{2})^{2}}
|
distance (-9,1)(-1,9)
|
distance\:(-9,1)(-1,9)
|
critical f(x)=2x^3-21x^2+5
|
critical\:f(x)=2x^{3}-21x^{2}+5
|
critical f(x)=x^2sqrt(x+14)
|
critical\:f(x)=x^{2}\sqrt{x+14}
|
critical f(x)=-14x+5
|
critical\:f(x)=-14x+5
|
critical f(x)=11x+1/x
|
critical\:f(x)=11x+\frac{1}{x}
|
critical+(x^2-4x)/(11)
|
critical\:+\frac{x^{2}-4x}{11}
|
critical f(x,y)=xy+2x-ln(x^2y)
|
critical\:f(x,y)=xy+2x-\ln(x^{2}y)
|
critical f(x,y)=(y^2-x^2)e^y
|
critical\:f(x,y)=(y^{2}-x^{2})e^{y}
|
critical (x^2-81)/(x^2-7x-144)
|
critical\:\frac{x^{2}-81}{x^{2}-7x-144}
|
f(x,y)=2x^3+y^3+3x^2-3y+12x-4
|
f(x,y)=2x^{3}+y^{3}+3x^{2}-3y+12x-4
|
critical f(x)=(x^2+3x-40)/(x+1)
|
critical\:f(x)=\frac{x^{2}+3x-40}{x+1}
|
domain f(x)=-\sqrt[3]{1/4 x+4}
|
domain\:f(x)=-\sqrt[3]{\frac{1}{4}x+4}
|
critical f(x)=(x+8)^{2/3}
|
critical\:f(x)=(x+8)^{\frac{2}{3}}
|
critical f(x)=((x+3))/(x^2-5x+6)
|
critical\:f(x)=\frac{(x+3)}{x^{2}-5x+6}
|
critical f(x)=x^4-(3x^2)/2-x+29/16
|
critical\:f(x)=x^{4}-\frac{3x^{2}}{2}-x+\frac{29}{16}
|
critical y=8-(x+3)^2
|
critical\:y=8-(x+3)^{2}
|
critical f(x,y)=y^3+3x^2-6xy-9y-2
|
critical\:f(x,y)=y^{3}+3x^{2}-6xy-9y-2
|
critical xsqrt(x^2+9)
|
critical\:x\sqrt{x^{2}+9}
|
critical f(x)=x^4+4x^3+4x^2+1
|
critical\:f(x)=x^{4}+4x^{3}+4x^{2}+1
|
critical y=(x+1)^2(x-2)^2
|
critical\:y=(x+1)^{2}(x-2)^{2}
|
critical 1/3 x^3-5/2 x^2+4x
|
critical\:\frac{1}{3}x^{3}-\frac{5}{2}x^{2}+4x
|
critical f(x)=(x^3)/(2x^2-8)
|
critical\:f(x)=\frac{x^{3}}{2x^{2}-8}
|
range f(x)=\sqrt[3]{x-1}
|
range\:f(x)=\sqrt[3]{x-1}
|
critical y=x^{4/5}(x-6)^2
|
critical\:y=x^{\frac{4}{5}}(x-6)^{2}
|
critical y=3cos(x)
|
critical\:y=3\cos(x)
|
critical f(x)=3x^5-5x^3+3
|
critical\:f(x)=3x^{5}-5x^{3}+3
|
critical f(x)=sqrt(|x|)+x/3
|
critical\:f(x)=\sqrt{\left|x\right|}+\frac{x}{3}
|
critical f(x,y)=x^2-4xy+3y^2+2x-4y
|
critical\:f(x,y)=x^{2}-4xy+3y^{2}+2x-4y
|
critical f(x)=((3+x)^2(4-x))/(x^2+7)
|
critical\:f(x)=\frac{(3+x)^{2}(4-x)}{x^{2}+7}
|
critical f(x)=sqrt(2x-x^2)
|
critical\:f(x)=\sqrt{2x-x^{2}}
|
critical f(x)=x^2+8x+19
|
critical\:f(x)=x^{2}+8x+19
|
critical f(x)=x^3+2x^2-4x
|
critical\:f(x)=x^{3}+2x^{2}-4x
|
critical f(x)=x^2\sqrt[3]{2x-5}
|
critical\:f(x)=x^{2}\sqrt[3]{2x-5}
|
asymptotes f(x)=(-9x-5)/(3x+3)
|
asymptotes\:f(x)=\frac{-9x-5}{3x+3}
|
critical (x-y)(4-xy)
|
critical\:(x-y)(4-xy)
|
f(x,y)=(x^2y)/(2x-y)
|
f(x,y)=\frac{x^{2}y}{2x-y}
|
critical f(x)=(x+4)(x-5)^2
|
critical\:f(x)=(x+4)(x-5)^{2}
|
critical \sqrt[3]{x}*e^{-x^3}
|
critical\:\sqrt[3]{x}\cdot\:e^{-x^{3}}
|
critical f(x)=2+x-2x^2-x^3
|
critical\:f(x)=2+x-2x^{2}-x^{3}
|
critical y= x/(x^2-4)
|
critical\:y=\frac{x}{x^{2}-4}
|
critical y=x^3-3x^2-9x+20
|
critical\:y=x^{3}-3x^{2}-9x+20
|
critical x^3-3x^2+9
|
critical\:x^{3}-3x^{2}+9
|
critical f(x)=8x-xy
|
critical\:f(x)=8x-xy
|
critical f(x)=2x^3+3x^2+1
|
critical\:f(x)=2x^{3}+3x^{2}+1
|
slope y=8x+7
|
slope\:y=8x+7
|
asymptotes f(x)=(x^2-3x+2)/(x^2+1)
|
asymptotes\:f(x)=\frac{x^{2}-3x+2}{x^{2}+1}
|
critical f(x)=(x-1)/(x^2+7)
|
critical\:f(x)=\frac{x-1}{x^{2}+7}
|
critical f(x)=xsqrt(13-x)
|
critical\:f(x)=x\sqrt{13-x}
|
critical f(x)=(x+1)/(sqrt(1+x^2))
|
critical\:f(x)=\frac{x+1}{\sqrt{1+x^{2}}}
|
critical f(x)=ln(x^2+9)
|
critical\:f(x)=\ln(x^{2}+9)
|
critical f(x)= 2/(x^2-3x+2)
|
critical\:f(x)=\frac{2}{x^{2}-3x+2}
|
critical f(x)=-4x^2+5x-3,-4<= x<= 4
|
critical\:f(x)=-4x^{2}+5x-3,-4\le\:x\le\:4
|
critical f(x,y)=4x^3+y^2-12x^2-8y+9x-2
|
critical\:f(x,y)=4x^{3}+y^{2}-12x^{2}-8y+9x-2
|
critical f(x)=|x|^x
|
critical\:f(x)=\left|x\right|^{x}
|
critical f(x,y)=xy-x^2-y^2-8x-2y+4
|
critical\:f(x,y)=xy-x^{2}-y^{2}-8x-2y+4
|
critical f(x,y)=x^2-3y^2-8x+9y+3xy
|
critical\:f(x,y)=x^{2}-3y^{2}-8x+9y+3xy
|
inverse log_{10}(x+4)-2
|
inverse\:\log_{10}(x+4)-2
|
critical f(x,y)=x^3-3x+3xy^2
|
critical\:f(x,y)=x^{3}-3x+3xy^{2}
|
critical f(x)=3x^2+4x+1
|
critical\:f(x)=3x^{2}+4x+1
|
critical (x+3)/(x^2)
|
critical\:\frac{x+3}{x^{2}}
|
critical g(t)=2(sin(x/2))/(-2),π<= x<= 2π
|
critical\:g(t)=2\frac{\sin(\frac{x}{2})}{-2},π\le\:x\le\:2π
|
critical 5+6x^2-x^4
|
critical\:5+6x^{2}-x^{4}
|
critical f(x)=3x^2+4x-4
|
critical\:f(x)=3x^{2}+4x-4
|