critical (x^2)/((x-2)^3)
|
critical\:\frac{x^{2}}{(x-2)^{3}}
|
critical y=2x^2+4x-3
|
critical\:y=2x^{2}+4x-3
|
critical f(x)= x/(x^2+14x+48)
|
critical\:f(x)=\frac{x}{x^{2}+14x+48}
|
critical f(x)=((x-2)/((x^2-x+1)^2))
|
critical\:f(x)=(\frac{x-2}{(x^{2}-x+1)^{2}})
|
asymptotes f(x)=3x+2/(x+5)
|
asymptotes\:f(x)=3x+\frac{2}{x+5}
|
critical f(x)=3x^2-5x-1
|
critical\:f(x)=3x^{2}-5x-1
|
critical f(x)= 5/((1-2x)^2)
|
critical\:f(x)=\frac{5}{(1-2x)^{2}}
|
critical f(x)=x^3-3/2 x^2-6x+1
|
critical\:f(x)=x^{3}-\frac{3}{2}x^{2}-6x+1
|
critical f(x)=-2x^2+4x+6
|
critical\:f(x)=-2x^{2}+4x+6
|
critical x^3+2x^2-15x-20
|
critical\:x^{3}+2x^{2}-15x-20
|
critical f(x)=5-|x-5|
|
critical\:f(x)=5-\left|x-5\right|
|
critical f(x)=2x^2(1-x^2)
|
critical\:f(x)=2x^{2}(1-x^{2})
|
critical f(x)=2x^4-9x^2+5
|
critical\:f(x)=2x^{4}-9x^{2}+5
|
critical xy^2+2xy+3x^3-3x
|
critical\:xy^{2}+2xy+3x^{3}-3x
|
critical f(x)=-x^2+1
|
critical\:f(x)=-x^{2}+1
|
critical points f(x)=(2x-1)x^{2/3}
|
critical\:points\:f(x)=(2x-1)x^{\frac{2}{3}}
|
critical f(x)=-x^2+8
|
critical\:f(x)=-x^{2}+8
|
critical f(x)=x^3e^{-x-x^2}
|
critical\:f(x)=x^{3}e^{-x-x^{2}}
|
critical x^3-3x^2-9x+20
|
critical\:x^{3}-3x^{2}-9x+20
|
critical f(x)=6x+2
|
critical\:f(x)=6x+2
|
critical f(x)=-2x^3+30x^2-126x+3
|
critical\:f(x)=-2x^{3}+30x^{2}-126x+3
|
critical f(x)=6x-6
|
critical\:f(x)=6x-6
|
critical f(x)=(x+2)^{2/3}+x^{2/3}
|
critical\:f(x)=(x+2)^{\frac{2}{3}}+x^{\frac{2}{3}}
|
critical f(x)=x^4+8x^3+10x^2+6
|
critical\:f(x)=x^{4}+8x^{3}+10x^{2}+6
|
critical f(x)=x^3+x^2-8x+5
|
critical\:f(x)=x^{3}+x^{2}-8x+5
|
critical 4x^3-36x^2+96x-64
|
critical\:4x^{3}-36x^{2}+96x-64
|
extreme points f(x)=(x^3)/3+(3x^2)/2
|
extreme\:points\:f(x)=\frac{x^{3}}{3}+\frac{3x^{2}}{2}
|
critical xsqrt(2-x)
|
critical\:x\sqrt{2-x}
|
critical f(x)=sqrt(3)sin(x)+cos(x)
|
critical\:f(x)=\sqrt{3}\sin(x)+\cos(x)
|
critical x^4-9x^2
|
critical\:x^{4}-9x^{2}
|
critical f(x)=\sqrt[3]{x^2-64}
|
critical\:f(x)=\sqrt[3]{x^{2}-64}
|
critical-4x^2+960x
|
critical\:-4x^{2}+960x
|
critical y=(x^2-3)/(x+2)
|
critical\:y=\frac{x^{2}-3}{x+2}
|
critical f(x)=((e^{1/x}))/x
|
critical\:f(x)=\frac{(e^{\frac{1}{x}})}{x}
|
critical f(x)=x^2-8x+15
|
critical\:f(x)=x^{2}-8x+15
|
critical 4-12x^2+1/16 x^4
|
critical\:4-12x^{2}+\frac{1}{16}x^{4}
|
critical f(x)=(x^3)/(x+4)
|
critical\:f(x)=\frac{x^{3}}{x+4}
|
domain 2^{-x}-4
|
domain\:2^{-x}-4
|
critical f(x)=x^2+4y^2-6x+16y
|
critical\:f(x)=x^{2}+4y^{2}-6x+16y
|
critical f(x)=8x^{1/3}-x^{4/3}
|
critical\:f(x)=8x^{\frac{1}{3}}-x^{\frac{4}{3}}
|
critical e^{-(x^2+y^2+2x)}
|
critical\:e^{-(x^{2}+y^{2}+2x)}
|
critical f(x)=-x^3+3x
|
critical\:f(x)=-x^{3}+3x
|
critical f(x)=x^{4/5}(x-9)
|
critical\:f(x)=x^{\frac{4}{5}}(x-9)
|
critical x/(\sqrt[3]{x^2-1)}
|
critical\:\frac{x}{\sqrt[3]{x^{2}-1}}
|
critical f(x)=e^{2x}(x^2-3x+2)
|
critical\:f(x)=e^{2x}(x^{2}-3x+2)
|
critical f(x)=sin(3x),0<x<π
|
critical\:f(x)=\sin(3x),0<x<π
|
critical f(x)= x/(sqrt(2))+sin(x)-sqrt(2)
|
critical\:f(x)=\frac{x}{\sqrt{2}}+\sin(x)-\sqrt{2}
|
critical f(x)=x^9y-27x^8+19683y
|
critical\:f(x)=x^{9}y-27x^{8}+19683y
|
global extreme points f(x)=x^5e^{9x},-1<= x<= 2
|
global\:extreme\:points\:f(x)=x^{5}e^{9x},-1\le\:x\le\:2
|
critical f(x)=2x^2+y^4-2x^2y^2+3
|
critical\:f(x)=2x^{2}+y^{4}-2x^{2}y^{2}+3
|
critical f(x)=(x^4)/4-(9x^2)/2
|
critical\:f(x)=\frac{x^{4}}{4}-\frac{9x^{2}}{2}
|
critical x^3+4x^2+4x-6
|
critical\:x^{3}+4x^{2}+4x-6
|
critical f(x)=10xln(x)
|
critical\:f(x)=10x\ln(x)
|
critical f(x)=2x^2-216sqrt(x)
|
critical\:f(x)=2x^{2}-216\sqrt{x}
|
critical y=x^3+3x^2+1
|
critical\:y=x^{3}+3x^{2}+1
|
critical f(x,y)=x^2-12xy+2y^4
|
critical\:f(x,y)=x^{2}-12xy+2y^{4}
|
critical f(x,y)=xy(5x+y-15)
|
critical\:f(x,y)=xy(5x+y-15)
|
critical x^3-12xy+8y^3
|
critical\:x^{3}-12xy+8y^{3}
|
critical x^8(x-2)^7
|
critical\:x^{8}(x-2)^{7}
|
parity y= 1/(d+ke^d)
|
parity\:y=\frac{1}{d+ke^{d}}
|
intercepts f(x)=4x^2-9
|
intercepts\:f(x)=4x^{2}-9
|
f(x,y)=x^3-3xy^2+6y^2
|
f(x,y)=x^{3}-3xy^{2}+6y^{2}
|
critical f(x,y)=x^2-8x+y^2+14y
|
critical\:f(x,y)=x^{2}-8x+y^{2}+14y
|
critical f(x)=5x^{4/5}-4x
|
critical\:f(x)=5x^{\frac{4}{5}}-4x
|
critical f(x)=2x^3-5x^2-3x+10
|
critical\:f(x)=2x^{3}-5x^{2}-3x+10
|
critical (e^x)/(1-e^x)
|
critical\:\frac{e^{x}}{1-e^{x}}
|
critical y=x^{5/3}-5x^{2/3}
|
critical\:y=x^{\frac{5}{3}}-5x^{\frac{2}{3}}
|
critical y= 2/3 x^3-2x^2-6x
|
critical\:y=\frac{2}{3}x^{3}-2x^{2}-6x
|
critical sqrt(x+2)-2
|
critical\:\sqrt{x+2}-2
|
critical 2x^3+12x^2-192x-45
|
critical\:2x^{3}+12x^{2}-192x-45
|
critical f(x,y)=x^3+y^3-3xy+1
|
critical\:f(x,y)=x^{3}+y^{3}-3xy+1
|
range sqrt(-x)-2
|
range\:\sqrt{-x}-2
|
critical x^4+8x^3+2x^2+5
|
critical\:x^{4}+8x^{3}+2x^{2}+5
|
critical f(x)=3x^2-2x^3
|
critical\:f(x)=3x^{2}-2x^{3}
|
critical tan^2(x)
|
critical\:\tan^{2}(x)
|
critical x^3-3x^2+24x+32
|
critical\:x^{3}-3x^{2}+24x+32
|
critical f(x)=(x^2-9)/(2x-4)
|
critical\:f(x)=\frac{x^{2}-9}{2x-4}
|
critical h(x)=sin^2(x)+cos(x),0<x<2π
|
critical\:h(x)=\sin^{2}(x)+\cos(x),0<x<2π
|
critical 3x+4y
|
critical\:3x+4y
|
critical 7x^5-3x^4
|
critical\:7x^{5}-3x^{4}
|
critical f(x)=x^3-6x^2+12x+10
|
critical\:f(x)=x^{3}-6x^{2}+12x+10
|
critical x^3+y^3+3x^2-18y^2+81y+5
|
critical\:x^{3}+y^{3}+3x^{2}-18y^{2}+81y+5
|
perpendicular 3x+6y=12,\at (3,3)
|
perpendicular\:3x+6y=12,\at\:(3,3)
|
critical f(x)=x(x^2-4)^2(x^2-1)
|
critical\:f(x)=x(x^{2}-4)^{2}(x^{2}-1)
|
critical f(θ)=θ-sqrt(2)sin(θ)
|
critical\:f(θ)=θ-\sqrt{2}\sin(θ)
|
critical f(x)=x+atan(x)
|
critical\:f(x)=x+a\tan(x)
|
critical f(x)=|sin(x)|,0<= x<= 2π
|
critical\:f(x)=\left|\sin(x)\right|,0\le\:x\le\:2π
|
critical f(x)=sqrt(3x^2-2x+1)
|
critical\:f(x)=\sqrt{3x^{2}-2x+1}
|
critical f(x)=x^3-3x^2-24x+11
|
critical\:f(x)=x^{3}-3x^{2}-24x+11
|
critical f(x)= 1/3 x^3+x^2
|
critical\:f(x)=\frac{1}{3}x^{3}+x^{2}
|
critical 4(x-2)^{2/3}
|
critical\:4(x-2)^{\frac{2}{3}}
|
critical-1/(x^2)
|
critical\:-\frac{1}{x^{2}}
|
critical e^{(-x^2)/2}
|
critical\:e^{\frac{-x^{2}}{2}}
|
range x^2-3x+3
|
range\:x^{2}-3x+3
|
critical f(x)=4x^2-8x+6
|
critical\:f(x)=4x^{2}-8x+6
|
critical (x^2+3x-40)/(x+1)
|
critical\:\frac{x^{2}+3x-40}{x+1}
|
critical f(x)=sin(2x)+sqrt(3)cos(2x)
|
critical\:f(x)=\sin(2x)+\sqrt{3}\cos(2x)
|
critical f(x)=-x^3+7x^2-15x
|
critical\:f(x)=-x^{3}+7x^{2}-15x
|
critical f(x)=2x^3-3x^2-12x+5
|
critical\:f(x)=2x^{3}-3x^{2}-12x+5
|
critical ln(27+x^3)
|
critical\:\ln(27+x^{3})
|