critical x^3+27x^2-57x
|
critical\:x^{3}+27x^{2}-57x
|
critical f(x)=(x^4)/4-2x
|
critical\:f(x)=\frac{x^{4}}{4}-2x
|
critical f(x)=x^2y+xy^2+3xy
|
critical\:f(x)=x^{2}y+xy^{2}+3xy
|
critical f(x)= x/(x^2+14)
|
critical\:f(x)=\frac{x}{x^{2}+14}
|
inflection points f(x)=sqrt(x+7)
|
inflection\:points\:f(x)=\sqrt{x+7}
|
critical (e^x)/(e^x+1)
|
critical\:\frac{e^{x}}{e^{x}+1}
|
f(x,y)=x^2+y^3-2x^3y^2
|
f(x,y)=x^{2}+y^{3}-2x^{3}y^{2}
|
critical 3x^2-2x+1
|
critical\:3x^{2}-2x+1
|
critical f(x)= 1/(x+1)
|
critical\:f(x)=\frac{1}{x+1}
|
critical f(x)=18x-2/3 x^3
|
critical\:f(x)=18x-\frac{2}{3}x^{3}
|
critical f(x)= x/(x-3)
|
critical\:f(x)=\frac{x}{x-3}
|
critical-5(x-4)^4+2
|
critical\:-5(x-4)^{4}+2
|
critical f(x)=8x-x^2
|
critical\:f(x)=8x-x^{2}
|
critical f(x)=(11-2x)e^x
|
critical\:f(x)=(11-2x)e^{x}
|
critical (x^2)/(x-5)
|
critical\:\frac{x^{2}}{x-5}
|
slope y=4x-3
|
slope\:y=4x-3
|
critical f(x)=3x+(27)/x
|
critical\:f(x)=3x+\frac{27}{x}
|
critical f(x,y)=x^2-xy+y^2+8
|
critical\:f(x,y)=x^{2}-xy+y^{2}+8
|
f(x,y)=xy^3e^{x^3y}
|
f(x,y)=xy^{3}e^{x^{3}y}
|
critical f(x,y)=2x^2+y^2+3xy-37-5x+8
|
critical\:f(x,y)=2x^{2}+y^{2}+3xy-37-5x+8
|
critical f(x)=x^4+3x^2
|
critical\:f(x)=x^{4}+3x^{2}
|
critical f(x)=x^4+4x^3+10
|
critical\:f(x)=x^{4}+4x^{3}+10
|
critical f(x)= 1/4 x^4-9/2 x^2
|
critical\:f(x)=\frac{1}{4}x^{4}-\frac{9}{2}x^{2}
|
critical f(x)=x-x^2
|
critical\:f(x)=x-x^{2}
|
critical f(x)=x^3-6x^2-15x
|
critical\:f(x)=x^{3}-6x^{2}-15x
|
critical f(x)=x^2-4xy+2y^2+4x+8y+9
|
critical\:f(x)=x^{2}-4xy+2y^{2}+4x+8y+9
|
domain f(x)=sqrt(16+x^2)
|
domain\:f(x)=\sqrt{16+x^{2}}
|
critical f(x)=x^3+7x^2-3x+9
|
critical\:f(x)=x^{3}+7x^{2}-3x+9
|
critical f(x)=x^6(x-3)^5
|
critical\:f(x)=x^{6}(x-3)^{5}
|
critical f(x)=x^4+2x^2y+2x^2+y^2+1/6 y^3
|
critical\:f(x)=x^{4}+2x^{2}y+2x^{2}+y^{2}+\frac{1}{6}y^{3}
|
critical f(x)=x^2+xy+y^2+3x-3y+4
|
critical\:f(x)=x^{2}+xy+y^{2}+3x-3y+4
|
critical h(x)=(x-1)/(x^2+4)
|
critical\:h(x)=\frac{x-1}{x^{2}+4}
|
critical (3x^2-12x+5)/(x^2+4)
|
critical\:\frac{3x^{2}-12x+5}{x^{2}+4}
|
critical f(x,y)=x^2-y^2x-xy
|
critical\:f(x,y)=x^{2}-y^{2}x-xy
|
critical f(x)=(2-3x)/(\sqrt[3]{x+4)}
|
critical\:f(x)=\frac{2-3x}{\sqrt[3]{x+4}}
|
critical 24e^{-0.2x}-21e^{-0.3x}
|
critical\:24e^{-0.2x}-21e^{-0.3x}
|
critical f(x)=(-18x)/((x^2-9)^2)
|
critical\:f(x)=\frac{-18x}{(x^{2}-9)^{2}}
|
midpoint (1,9)(1,3)
|
midpoint\:(1,9)(1,3)
|
critical f(x)=xsqrt(11-x)
|
critical\:f(x)=x\sqrt{11-x}
|
critical x^3(x-2)^2
|
critical\:x^{3}(x-2)^{2}
|
critical f(x)=x^3-6x^2+11
|
critical\:f(x)=x^{3}-6x^{2}+11
|
critical xe^{-9x}
|
critical\:xe^{-9x}
|
critical f(x)=(x-3)e^x
|
critical\:f(x)=(x-3)e^{x}
|
critical f(x,y)=3x^4+3y^4-xy
|
critical\:f(x,y)=3x^{4}+3y^{4}-xy
|
critical f(x)=(x^2+1x+2)e^{x-2}
|
critical\:f(x)=(x^{2}+1x+2)e^{x-2}
|
critical f(x)= x/(x^2+49)
|
critical\:f(x)=\frac{x}{x^{2}+49}
|
critical (y-3)/(y^2-3y+9)
|
critical\:\frac{y-3}{y^{2}-3y+9}
|
critical f(x)=x^{3/4}-x^{1/4}
|
critical\:f(x)=x^{\frac{3}{4}}-x^{\frac{1}{4}}
|
parity \sqrt[3]{x}
|
parity\:\sqrt[3]{x}
|
critical points f(x)= x/(x^2+49)
|
critical\:points\:f(x)=\frac{x}{x^{2}+49}
|
critical ((x-1))/(x^2)
|
critical\:\frac{(x-1)}{x^{2}}
|
critical 2x^3+5x^2+2x
|
critical\:2x^{3}+5x^{2}+2x
|
critical f(x)=2x-5
|
critical\:f(x)=2x-5
|
critical (-4)/(x^2-9)
|
critical\:\frac{-4}{x^{2}-9}
|
critical x^3(x+2)
|
critical\:x^{3}(x+2)
|
critical f(x)=(11-x)(x+1)^2
|
critical\:f(x)=(11-x)(x+1)^{2}
|
critical f(x)=((x^2))/(x-2)
|
critical\:f(x)=\frac{(x^{2})}{x-2}
|
critical f(x)=7x^2-2x+6
|
critical\:f(x)=7x^{2}-2x+6
|
f(x,y)=-3x^3+4x^2y+15y^2+6
|
f(x,y)=-3x^{3}+4x^{2}y+15y^{2}+6
|
critical (2x)/(x^2-4)
|
critical\:\frac{2x}{x^{2}-4}
|
asymptotes f(x)= 8/(x^2+64)
|
asymptotes\:f(x)=\frac{8}{x^{2}+64}
|
critical f(x)=30x^2y-45x^2+4y^3-30y^2+7
|
critical\:f(x)=30x^{2}y-45x^{2}+4y^{3}-30y^{2}+7
|
critical f(x)=e^x(2x^3+3x^2)
|
critical\:f(x)=e^{x}(2x^{3}+3x^{2})
|
critical y=(x^2)/(x+1)
|
critical\:y=\frac{x^{2}}{x+1}
|
critical f(x)=x^3-9x^2+24x+5
|
critical\:f(x)=x^{3}-9x^{2}+24x+5
|
critical f(x)=6x^4+6x^3
|
critical\:f(x)=6x^{4}+6x^{3}
|
y=In(x-1)+e^{x^2-3}+(x^2-4)^{5/3}
|
y=In(x-1)+e^{x^{2}-3}+(x^{2}-4)^{\frac{5}{3}}
|
critical f(x)=(2(x-2)^2)/(e^{x-2)}+1
|
critical\:f(x)=\frac{2(x-2)^{2}}{e^{x-2}}+1
|
f(x,y)=x^3+y^2
|
f(x,y)=x^{3}+y^{2}
|
critical f(x,y)=5ye^x-6e^y
|
critical\:f(x,y)=5ye^{x}-6e^{y}
|
f(z)=(z^4)/4-(4x^3)/6
|
f(z)=\frac{z^{4}}{4}-\frac{4x^{3}}{6}
|
perpendicular y=-x/2-6,\at (-8,1)
|
perpendicular\:y=-\frac{x}{2}-6,\at\:(-8,1)
|
critical e^x(8-x^2)
|
critical\:e^{x}(8-x^{2})
|
critical (e^x)/(x+1)
|
critical\:\frac{e^{x}}{x+1}
|
critical f(x)=(e^{-x})/((1+e^{-x))^2}
|
critical\:f(x)=\frac{e^{-x}}{(1+e^{-x})^{2}}
|
critical f(x)=4x^2
|
critical\:f(x)=4x^{2}
|
critical f(x)=14x^{5/7}-7x^{12/7}
|
critical\:f(x)=14x^{\frac{5}{7}}-7x^{\frac{12}{7}}
|
critical f(x)=(2-x)^3
|
critical\:f(x)=(2-x)^{3}
|
critical x^8(x-4)^7
|
critical\:x^{8}(x-4)^{7}
|
critical f(x)=x^3-9x^2+24x
|
critical\:f(x)=x^{3}-9x^{2}+24x
|
critical (7x)/(x^2+16)
|
critical\:\frac{7x}{x^{2}+16}
|
critical f(x)=2x(8-x)^3
|
critical\:f(x)=2x(8-x)^{3}
|
symmetry 1/(x^2-1)
|
symmetry\:\frac{1}{x^{2}-1}
|
critical f(x)=2cos(2x)
|
critical\:f(x)=2\cos(2x)
|
critical f(x)=2x^3-9x^2+12x-3
|
critical\:f(x)=2x^{3}-9x^{2}+12x-3
|
critical f(x)=x^3(x+2)^2(x-2)
|
critical\:f(x)=x^{3}(x+2)^{2}(x-2)
|
critical f(x)=x^2-2x+4
|
critical\:f(x)=x^{2}-2x+4
|
critical f(x)=x^2-2x+6
|
critical\:f(x)=x^{2}-2x+6
|
critical f(x)=x^2-2x+5
|
critical\:f(x)=x^{2}-2x+5
|
critical f(x)=x^2-2x+7
|
critical\:f(x)=x^{2}-2x+7
|
critical f(x)=x^2-2x-8
|
critical\:f(x)=x^{2}-2x-8
|
critical f(x)= x/(x^2+9x+14)
|
critical\:f(x)=\frac{x}{x^{2}+9x+14}
|
critical f(x)=x^4+y^4-4xy+2
|
critical\:f(x)=x^{4}+y^{4}-4xy+2
|
monotone intervals x^4-2x^2
|
monotone\:intervals\:x^{4}-2x^{2}
|
critical f(x)=-x^{2/3}(x-1)
|
critical\:f(x)=-x^{\frac{2}{3}}(x-1)
|
critical f(x)=2x^3-24x+5
|
critical\:f(x)=2x^{3}-24x+5
|
critical (e^{-x}(e^{-x}-1))/((1+e^{-x))^3}
|
critical\:\frac{e^{-x}(e^{-x}-1)}{(1+e^{-x})^{3}}
|
critical f(x)=2x(x-2)
|
critical\:f(x)=2x(x-2)
|
critical f(x)=x^2+x-6
|
critical\:f(x)=x^{2}+x-6
|
f(x,y)=3x^3-6x^2-4xy^2+10
|
f(x,y)=3x^{3}-6x^{2}-4xy^{2}+10
|