critical f(x)=x^4-6x^3-12x^2-8x^1
|
critical\:f(x)=x^{4}-6x^{3}-12x^{2}-8x^{1}
|
critical y=x(4-x)^3
|
critical\:y=x(4-x)^{3}
|
critical f(x)=x^8(x-2)^7
|
critical\:f(x)=x^{8}(x-2)^{7}
|
critical x^2+y^2-3xy
|
critical\:x^{2}+y^{2}-3xy
|
inverse f(x)=(2x)/(x+7)
|
inverse\:f(x)=\frac{2x}{x+7}
|
critical f(x,y)=4x^2+1/4 y^3-2xy
|
critical\:f(x,y)=4x^{2}+\frac{1}{4}y^{3}-2xy
|
critical x^3-3x^2-24x-10
|
critical\:x^{3}-3x^{2}-24x-10
|
critical f(x)=4x^2+2y^2-2xy-10y-2x
|
critical\:f(x)=4x^{2}+2y^{2}-2xy-10y-2x
|
critical f(x,y)=e^{x^2+0.5y^2-4xy-3x}
|
critical\:f(x,y)=e^{x^{2}+0.5y^{2}-4xy-3x}
|
critical f(x)=15+30x-25x^2
|
critical\:f(x)=15+30x-25x^{2}
|
critical (x-1)/(x+1)
|
critical\:\frac{x-1}{x+1}
|
critical f(x)= x/(x^2+3)
|
critical\:f(x)=\frac{x}{x^{2}+3}
|
critical f(x)=-x^4+3x^2-3
|
critical\:f(x)=-x^{4}+3x^{2}-3
|
critical f(x)= 3/4 x^4+4/5 x^3
|
critical\:f(x)=\frac{3}{4}x^{4}+\frac{4}{5}x^{3}
|
critical f(x)=(2x+x^4)/((1-x^3)^2)
|
critical\:f(x)=\frac{2x+x^{4}}{(1-x^{3})^{2}}
|
critical points 18x^6-60x^5+66x^4-24x^3+6x^2-12x+6
|
critical\:points\:18x^{6}-60x^{5}+66x^{4}-24x^{3}+6x^{2}-12x+6
|
critical xsqrt(2-x^2)
|
critical\:x\sqrt{2-x^{2}}
|
critical x+9/x+2
|
critical\:x+\frac{9}{x}+2
|
critical f(x)=x^3+9/2 x^2
|
critical\:f(x)=x^{3}+\frac{9}{2}x^{2}
|
critical f(x)=x^3+3xy^2-6xy+1
|
critical\:f(x)=x^{3}+3xy^{2}-6xy+1
|
critical f(x)=x^2-3y^2-8x+9y+3xy
|
critical\:f(x)=x^{2}-3y^{2}-8x+9y+3xy
|
critical x^3+9x^2+24x+1
|
critical\:x^{3}+9x^{2}+24x+1
|
critical sqrt(9-x^2)
|
critical\:\sqrt{9-x^{2}}
|
critical f(x)=x^3-x^2-6x
|
critical\:f(x)=x^{3}-x^{2}-6x
|
critical (x-2)e^x
|
critical\:(x-2)e^{x}
|
critical f(x)=x(12-x)^3
|
critical\:f(x)=x(12-x)^{3}
|
domain f(x)=8x^2
|
domain\:f(x)=8x^{2}
|
critical f(x)=2x^4-4x^2+6
|
critical\:f(x)=2x^{4}-4x^{2}+6
|
critical 5cot(x)
|
critical\:5\cot(x)
|
critical f(x)=(4x)/((x^2+2)^2)
|
critical\:f(x)=\frac{4x}{(x^{2}+2)^{2}}
|
critical f(x,y)=x^3+y^4-6x-2y^2
|
critical\:f(x,y)=x^{3}+y^{4}-6x-2y^{2}
|
critical sqrt(4-x^2-y^2)
|
critical\:\sqrt{4-x^{2}-y^{2}}
|
critical f(x)=8x^3-x^4
|
critical\:f(x)=8x^{3}-x^{4}
|
critical f(x)=11.4(e^{-0.2x}-e^{-0.4x})
|
critical\:f(x)=11.4(e^{-0.2x}-e^{-0.4x})
|
critical (e^{1/x})/x
|
critical\:\frac{e^{\frac{1}{x}}}{x}
|
critical f(x)=4x-4x^3
|
critical\:f(x)=4x-4x^{3}
|
critical f(x)=2x^3+6x^2-18x-4,0<= x<= 3
|
critical\:f(x)=2x^{3}+6x^{2}-18x-4,0\le\:x\le\:3
|
monotone intervals f(x)=x^2+6x
|
monotone\:intervals\:f(x)=x^{2}+6x
|
domain x^3+2
|
domain\:x^{3}+2
|
critical f(x)=(x+4)(x-4)^2
|
critical\:f(x)=(x+4)(x-4)^{2}
|
critical f(x,y)=x^2-4xy+2y^2+4x+8y+5
|
critical\:f(x,y)=x^{2}-4xy+2y^{2}+4x+8y+5
|
critical y=(x-1)^2(x-3)^2
|
critical\:y=(x-1)^{2}(x-3)^{2}
|
critical f(x)=x^3+2x^2
|
critical\:f(x)=x^{3}+2x^{2}
|
f(x,y)=x^3+y^3-3x
|
f(x,y)=x^{3}+y^{3}-3x
|
critical f(x)= 4/(x+3)
|
critical\:f(x)=\frac{4}{x+3}
|
critical f(x)=-13+9*x^2+x*y+y^2
|
critical\:f(x)=-13+9\cdot\:x^{2}+x\cdot\:y+y^{2}
|
critical f(x)=(x^2-2x)/((x-1)^2)
|
critical\:f(x)=\frac{x^{2}-2x}{(x-1)^{2}}
|
critical f(x)=4x^3+7x^2-6x-3
|
critical\:f(x)=4x^{3}+7x^{2}-6x-3
|
critical f(x)=sqrt(x^3-3x)
|
critical\:f(x)=\sqrt{x^{3}-3x}
|
inflection points f(x)=3x^4+4x^3
|
inflection\:points\:f(x)=3x^{4}+4x^{3}
|
critical f(-4)=x^2+4x+4
|
critical\:f(-4)=x^{2}+4x+4
|
critical (x-1)^3
|
critical\:(x-1)^{3}
|
critical (3x)/(x^2-1)
|
critical\:\frac{3x}{x^{2}-1}
|
critical x^2+6xy+12y^2-6x+10y-2
|
critical\:x^{2}+6xy+12y^{2}-6x+10y-2
|
critical 3x^4-4x^3+6
|
critical\:3x^{4}-4x^{3}+6
|
critical y=x^3+6x^2-15x
|
critical\:y=x^{3}+6x^{2}-15x
|
critical x^2+x-x^3+6+x^5
|
critical\:x^{2}+x-x^{3}+6+x^{5}
|
critical f(x)=x^4-32x+8
|
critical\:f(x)=x^{4}-32x+8
|
critical (x^2-1)/(x^2-4)
|
critical\:\frac{x^{2}-1}{x^{2}-4}
|
critical xy(64-x-y)
|
critical\:xy(64-x-y)
|
intercepts x^4-6x^2+8
|
intercepts\:x^{4}-6x^{2}+8
|
critical f(x)=(x^2-x)^{1/3}
|
critical\:f(x)=(x^{2}-x)^{\frac{1}{3}}
|
critical f(x,y)=x^4+y^4-4xy
|
critical\:f(x,y)=x^{4}+y^{4}-4xy
|
critical f(x)=y=x^2+2x+25
|
critical\:f(x)=y=x^{2}+2x+25
|
critical f(x)=x^3e^{4x}
|
critical\:f(x)=x^{3}e^{4x}
|
critical f(x,y,z)=x^3+3xy+y^3
|
critical\:f(x,y,z)=x^{3}+3xy+y^{3}
|
critical f(x)=((x-1)^{2/3})/(x^2)
|
critical\:f(x)=\frac{(x-1)^{\frac{2}{3}}}{x^{2}}
|
critical x^2+2y^2-x^2y
|
critical\:x^{2}+2y^{2}-x^{2}y
|
critical x^3-6x^2-15x
|
critical\:x^{3}-6x^{2}-15x
|
f(x)=In(1+x)
|
f(x)=In(1+x)
|
critical f(x)=x^2+1
|
critical\:f(x)=x^{2}+1
|
asymptotes f(x)=sqrt(x^2+7)
|
asymptotes\:f(x)=\sqrt{x^{2}+7}
|
critical 2x+2
|
critical\:2x+2
|
critical 2x-1
|
critical\:2x-1
|
f(x,y)=x^2y^2e^{2xy}
|
f(x,y)=x^{2}y^{2}e^{2xy}
|
critical (4x^2)/(x^2-25)
|
critical\:\frac{4x^{2}}{x^{2}-25}
|
critical f(x)=ln(2/(1+x^2))
|
critical\:f(x)=\ln(\frac{2}{1+x^{2}})
|
critical f(x)=(2x)/(x^2-25)
|
critical\:f(x)=\frac{2x}{x^{2}-25}
|
critical f(x,y)=x^2-(y^3)/3-(x^2*y)/2+6y
|
critical\:f(x,y)=x^{2}-\frac{y^{3}}{3}-\frac{x^{2}\cdot\:y}{2}+6y
|
P(x,y)=5x^3+y^2-3x^3y^2
|
P(x,y)=5x^{3}+y^{2}-3x^{3}y^{2}
|
critical f(x)=x^4e^{-5x}
|
critical\:f(x)=x^{4}e^{-5x}
|
critical (3x)/(x^2-36)
|
critical\:\frac{3x}{x^{2}-36}
|
intercepts y=3(2^x)
|
intercepts\:y=3(2^{x})
|
critical f(x)=2x^2+4x+4
|
critical\:f(x)=2x^{2}+4x+4
|
critical f(x)=2x^2+4x+5
|
critical\:f(x)=2x^{2}+4x+5
|
critical f(x)=x^3e^{-4x}
|
critical\:f(x)=x^{3}e^{-4x}
|
critical g(x)=x^4-x^2
|
critical\:g(x)=x^{4}-x^{2}
|
critical f(x)=(x^2)/(4-x^2)
|
critical\:f(x)=\frac{x^{2}}{4-x^{2}}
|
critical f(x)=x^3+2x^2-x+8
|
critical\:f(x)=x^{3}+2x^{2}-x+8
|
critical (sqrt(x))/(1+x^2)
|
critical\:\frac{\sqrt{x}}{1+x^{2}}
|
critical f(x)=(x^4)/4+(x^3)/2-(x^2)/2+8
|
critical\:f(x)=\frac{x^{4}}{4}+\frac{x^{3}}{2}-\frac{x^{2}}{2}+8
|
critical f(x)=(7(-x^2+49))/((x^2+49)^2)
|
critical\:f(x)=\frac{7(-x^{2}+49)}{(x^{2}+49)^{2}}
|
critical f(x)=-14+5x^2+xy+y^2
|
critical\:f(x)=-14+5x^{2}+xy+y^{2}
|
inverse f(x)=2^{x/5}
|
inverse\:f(x)=2^{\frac{x}{5}}
|
critical f(x)=12x^5+15x^4-240x^3+5
|
critical\:f(x)=12x^{5}+15x^{4}-240x^{3}+5
|
critical f(x)=12x^5+15x^4-240x^3+6
|
critical\:f(x)=12x^{5}+15x^{4}-240x^{3}+6
|
critical x^2+4x
|
critical\:x^{2}+4x
|
critical f(x)=e^{x^3-9x^2+15x-1}
|
critical\:f(x)=e^{x^{3}-9x^{2}+15x-1}
|
critical f(x)=(x^4)/4-8x
|
critical\:f(x)=\frac{x^{4}}{4}-8x
|
critical f(x)=2x^3+6xy^2-3y^3-150x
|
critical\:f(x)=2x^{3}+6xy^{2}-3y^{3}-150x
|