y=x^4-16
|
y=x^{4}-16
|
y=x^4-4x
|
y=x^{4}-4x
|
y=3^{2x}
|
y=3^{2x}
|
f(x)=7x-12
|
f(x)=7x-12
|
domain of f(x)=sqrt(x+31)-5sqrt(x-6)
|
domain\:f(x)=\sqrt{x+31}-5\sqrt{x-6}
|
y=(1+1/x)^x
|
y=(1+\frac{1}{x})^{x}
|
y=5x^2+6x+1
|
y=5x^{2}+6x+1
|
g(x)=x|x|
|
g(x)=x\left|x\right|
|
f(x)=(2-x)/(x+1)
|
f(x)=\frac{2-x}{x+1}
|
f(x)=cos^2(x)-2cos(x)
|
f(x)=\cos^{2}(x)-2\cos(x)
|
y=x^3-216
|
y=x^{3}-216
|
f(x)=(2+x^2)/(1-x^2)
|
f(x)=\frac{2+x^{2}}{1-x^{2}}
|
y=(x-3)(x+1)
|
y=(x-3)(x+1)
|
y=(x-3)(x+2)
|
y=(x-3)(x+2)
|
f(x)=-x^2-6x-10
|
f(x)=-x^{2}-6x-10
|
slope intercept of y=5x+2
|
slope\:intercept\:y=5x+2
|
range of f(x)=(x+1)/(x-2)
|
range\:f(x)=\frac{x+1}{x-2}
|
f(x)= 1/4 x^4+4/3 x^3+2x^2
|
f(x)=\frac{1}{4}x^{4}+\frac{4}{3}x^{3}+2x^{2}
|
f(y)=9y^2
|
f(y)=9y^{2}
|
f(x)=sec(5x+2)
|
f(x)=\sec(5x+2)
|
f(m)=m^4-18m^2+81
|
f(m)=m^{4}-18m^{2}+81
|
f(a)=log_{10}(a)
|
f(a)=\log_{10}(a)
|
y=|x-3|+4
|
y=\left|x-3\right|+4
|
f(x)=2x^4+x^2-x^2+4
|
f(x)=2x^{4}+x^{2}-x^{2}+4
|
r(θ)=4cot(θ)csc(θ)
|
r(θ)=4\cot(θ)\csc(θ)
|
g(x)=log_{10}(x)
|
g(x)=\log_{10}(x)
|
f(x)=x^2-12x+33
|
f(x)=x^{2}-12x+33
|
inverse of f(x)= 1/(x+2)+4
|
inverse\:f(x)=\frac{1}{x+2}+4
|
f(x)=sqrt(11-x)
|
f(x)=\sqrt{11-x}
|
P(x)=x^3+2x^2-5x-6
|
P(x)=x^{3}+2x^{2}-5x-6
|
f(x)=ln(5x)
|
f(x)=\ln(5x)
|
f(x)=xcos(1/x)
|
f(x)=x\cos(\frac{1}{x})
|
f(x)=log_{10}(x-7)
|
f(x)=\log_{10}(x-7)
|
f(x)=sin(x)-sin^2(x)
|
f(x)=\sin(x)-\sin^{2}(x)
|
f(x)=log_{4}(x+4)
|
f(x)=\log_{4}(x+4)
|
f(x)=log_{4}(x+5)
|
f(x)=\log_{4}(x+5)
|
f(x)=2*sin(x)
|
f(x)=2\cdot\:\sin(x)
|
f(x)=|2x+4|
|
f(x)=\left|2x+4\right|
|
domain of f(x)=(x+8)/(x^2-64)
|
domain\:f(x)=\frac{x+8}{x^{2}-64}
|
f(x)=e^x-3x^2
|
f(x)=e^{x}-3x^{2}
|
y=3x^2-12x+9
|
y=3x^{2}-12x+9
|
y=-(x-3)^2+2
|
y=-(x-3)^{2}+2
|
f(x)=(x-3)/3
|
f(x)=\frac{x-3}{3}
|
f(x)=4x^2-3x-1
|
f(x)=4x^{2}-3x-1
|
f(x)=(x-3)/(x^2+x-12)
|
f(x)=\frac{x-3}{x^{2}+x-12}
|
f(x)=(x^2-25)/(2x^2-17x+35)
|
f(x)=\frac{x^{2}-25}{2x^{2}-17x+35}
|
f(x)=sqrt((x(3+x)-4)/(x^2-1))
|
f(x)=\sqrt{\frac{x(3+x)-4}{x^{2}-1}}
|
y=x^2-64
|
y=x^{2}-64
|
36y^2=(x^2-4)^3,2<= x<= 3
|
36y^{2}=(x^{2}-4)^{3},2\le\:x\le\:3
|
range of (2x)/(x+5)
|
range\:\frac{2x}{x+5}
|
f(x)=-x^2-6x-9
|
f(x)=-x^{2}-6x-9
|
y= 3/4 x^2
|
y=\frac{3}{4}x^{2}
|
f(x)=4x^2-4x+1
|
f(x)=4x^{2}-4x+1
|
y=2(1/3)^x
|
y=2(\frac{1}{3})^{x}
|
y=x^4-4x^3+3x^2-3
|
y=x^{4}-4x^{3}+3x^{2}-3
|
y=x^2-9x+20
|
y=x^{2}-9x+20
|
f(x)=5xe^x
|
f(x)=5xe^{x}
|
f(x)=e^{2x}-1
|
f(x)=e^{2x}-1
|
f(x)=x^3+2x^2+4x+5
|
f(x)=x^{3}+2x^{2}+4x+5
|
f(x)=-x^2-7x-5
|
f(x)=-x^{2}-7x-5
|
midpoint (4,14),(16,4)
|
midpoint\:(4,14),(16,4)
|
y=x(x+4)
|
y=x(x+4)
|
f(x)=sqrt(\sqrt{x-2)-2}
|
f(x)=\sqrt{\sqrt{x-2}-2}
|
y=-2(x-3)^2-4
|
y=-2(x-3)^{2}-4
|
f(x)= 2/3 x-2
|
f(x)=\frac{2}{3}x-2
|
f(x)=x^{2/3}-1
|
f(x)=x^{\frac{2}{3}}-1
|
y=arctan(-3x)
|
y=\arctan(-3x)
|
f(m)=8-m^3
|
f(m)=8-m^{3}
|
f(x)=sqrt(17-x)
|
f(x)=\sqrt{17-x}
|
f(θ)=sin^2(θ/2)
|
f(θ)=\sin^{2}(\frac{θ}{2})
|
f(x)=3x^4-4x^3-12x^2+2
|
f(x)=3x^{4}-4x^{3}-12x^{2}+2
|
asymptotes of sqrt(4-x^2)
|
asymptotes\:\sqrt{4-x^{2}}
|
f(x)=3x^2-10x+3
|
f(x)=3x^{2}-10x+3
|
f(x)=cos(3x)-e^{2sin(3x)}
|
f(x)=\cos(3x)-e^{2\sin(3x)}
|
f(x)=sqrt(x/(x+1))
|
f(x)=\sqrt{\frac{x}{x+1}}
|
f(x)=2x^2+3x-10
|
f(x)=2x^{2}+3x-10
|
f(x)=(e^x)/(1+x)
|
f(x)=\frac{e^{x}}{1+x}
|
f(x)=1-sin^4(x)
|
f(x)=1-\sin^{4}(x)
|
y=-2x^3+7x^2-20x+6
|
y=-2x^{3}+7x^{2}-20x+6
|
f(x)=x^2+9x+20
|
f(x)=x^{2}+9x+20
|
f(x)=x^3-9x^2+31x-39
|
f(x)=x^{3}-9x^{2}+31x-39
|
y=(x+4)(x-2)
|
y=(x+4)(x-2)
|
asymptotes of f(x)=(x^4-256)/(2x^2-8x)
|
asymptotes\:f(x)=\frac{x^{4}-256}{2x^{2}-8x}
|
y=cos(1/2 x)
|
y=\cos(\frac{1}{2}x)
|
f(x)=7x^9
|
f(x)=7x^{9}
|
f(x)=(5x-5)/(x^2-6x+5)
|
f(x)=\frac{5x-5}{x^{2}-6x+5}
|
f(x)=(x^2+x-38)/(x^2-25)
|
f(x)=\frac{x^{2}+x-38}{x^{2}-25}
|
y=2^x-2
|
y=2^{x}-2
|
f(t)=6t^2
|
f(t)=6t^{2}
|
f(x)=3x^2+x+2
|
f(x)=3x^{2}+x+2
|
f(x)=xsqrt(x^2+4)
|
f(x)=x\sqrt{x^{2}+4}
|
f(x)=4x^3-x^2-4x+1
|
f(x)=4x^{3}-x^{2}-4x+1
|
f(x)=30x^2
|
f(x)=30x^{2}
|
midpoint (-2,1),(4,-3)
|
midpoint\:(-2,1),(4,-3)
|
y= 1/x-2
|
y=\frac{1}{x}-2
|
f(x)=x^{sqrt(3)}
|
f(x)=x^{\sqrt{3}}
|
y=sqrt(x^2-a^2)
|
y=\sqrt{x^{2}-a^{2}}
|
f(x)=4x^5-5x^4
|
f(x)=4x^{5}-5x^{4}
|
f(a)=8-3a
|
f(a)=8-3a
|
h(t)=-16t^2+64
|
h(t)=-16t^{2}+64
|