critical 12x^3-12x
|
critical\:12x^{3}-12x
|
critical f(x)=(1-ln(x))/(x^2)
|
critical\:f(x)=\frac{1-\ln(x)}{x^{2}}
|
critical f(x)=sin(x)+cos(x),(0,2π)
|
critical\:f(x)=\sin(x)+\cos(x),(0,2π)
|
critical f(x)=sin(x/2)
|
critical\:f(x)=\sin(\frac{x}{2})
|
f(x,y)=3x^3y+y^2
|
f(x,y)=3x^{3}y+y^{2}
|
inflection points x/(x^2+243)
|
inflection\:points\:\frac{x}{x^{2}+243}
|
inverse f(x)=-1+7x^5
|
inverse\:f(x)=-1+7x^{5}
|
critical f(x,y)=3x^2-2xy+y^2-8y
|
critical\:f(x,y)=3x^{2}-2xy+y^{2}-8y
|
critical f(x,y)=x^2-2xy+2y^2-2y
|
critical\:f(x,y)=x^{2}-2xy+2y^{2}-2y
|
critical f(x)=-4x^4
|
critical\:f(x)=-4x^{4}
|
critical f(x)=5x^3+8x
|
critical\:f(x)=5x^{3}+8x
|
critical f(x)=-x^3+6x^2+63x
|
critical\:f(x)=-x^{3}+6x^{2}+63x
|
critical h(t)=t^{3/4}-6t^{1/4}
|
critical\:h(t)=t^{\frac{3}{4}}-6t^{\frac{1}{4}}
|
critical f(x)=(x-3)(x-11)^3
|
critical\:f(x)=(x-3)(x-11)^{3}
|
critical f(x)=x^3-3x^2-9x+11
|
critical\:f(x)=x^{3}-3x^{2}-9x+11
|
f(x,y)=x^3+2x^2y-7xy^2+4y^3
|
f(x,y)=x^{3}+2x^{2}y-7xy^{2}+4y^{3}
|
critical f(x)=2x^3-3xy+3y^3
|
critical\:f(x)=2x^{3}-3xy+3y^{3}
|
intercepts f(x)=3(x=0)^2=0
|
intercepts\:f(x)=3(x=0)^{2}=0
|
critical f(x)=x^5e^{6x}
|
critical\:f(x)=x^{5}e^{6x}
|
critical f(x)=x(24-2x)^2
|
critical\:f(x)=x(24-2x)^{2}
|
f(x)=x^4+y^4-2(x-y)^2
|
f(x)=x^{4}+y^{4}-2(x-y)^{2}
|
critical f(x)=x^5e^{-8x}
|
critical\:f(x)=x^{5}e^{-8x}
|
f(x,y)=x^5+y^5-5x-5y
|
f(x,y)=x^{5}+y^{5}-5x-5y
|
critical f(x,y)=y^2+xy+3x+2y+5
|
critical\:f(x,y)=y^{2}+xy+3x+2y+5
|
critical y=xe^{3-x/4}
|
critical\:y=xe^{3-\frac{x}{4}}
|
critical f(x)=((x+1))/((x-3))
|
critical\:f(x)=\frac{(x+1)}{(x-3)}
|
critical (x^2-9)/(2x-4)
|
critical\:\frac{x^{2}-9}{2x-4}
|
critical f(x)=2x^3-15x^2-36
|
critical\:f(x)=2x^{3}-15x^{2}-36
|
domain f(x)=(x-7)/(x^2)
|
domain\:f(x)=\frac{x-7}{x^{2}}
|
critical f(x,y)=x^3y+24x^2-8y
|
critical\:f(x,y)=x^{3}y+24x^{2}-8y
|
critical f(x)=((x^4)/4)-x^3-2x^2+12x
|
critical\:f(x)=(\frac{x^{4}}{4})-x^{3}-2x^{2}+12x
|
critical h(x)=sin^2(x)+cos(x)
|
critical\:h(x)=\sin^{2}(x)+\cos(x)
|
critical f(x)=x^6e^{-9x}
|
critical\:f(x)=x^{6}e^{-9x}
|
critical f(x)=2y-2y^2-3xy
|
critical\:f(x)=2y-2y^{2}-3xy
|
critical f(x)=sqrt(x)(x-3)
|
critical\:f(x)=\sqrt{x}(x-3)
|
critical f(x)=(5x)/(x+8)
|
critical\:f(x)=\frac{5x}{x+8}
|
critical xsqrt(x^2+4)
|
critical\:x\sqrt{x^{2}+4}
|
critical f(x)=x^3+y^3-3x-3y
|
critical\:f(x)=x^{3}+y^{3}-3x-3y
|
critical x^{1/5}(x+1)
|
critical\:x^{\frac{1}{5}}(x+1)
|
distance (6,5)(-2,5)
|
distance\:(6,5)(-2,5)
|
critical f(x)=((t^2)/(t+1))
|
critical\:f(x)=(\frac{t^{2}}{t+1})
|
critical f(x)= 1/3 x^3-x^2-8x
|
critical\:f(x)=\frac{1}{3}x^{3}-x^{2}-8x
|
critical f(x)=x^3+y^3-3x-3y+4
|
critical\:f(x)=x^{3}+y^{3}-3x-3y+4
|
critical 5e^x-e^{2x}
|
critical\:5e^{x}-e^{2x}
|
critical f(x)=x+asqrt(x)
|
critical\:f(x)=x+a\sqrt{x}
|
critical y=x^3-3x^2-9x+10
|
critical\:y=x^{3}-3x^{2}-9x+10
|
critical f(x)=(6x)/(x^2-49)
|
critical\:f(x)=\frac{6x}{x^{2}-49}
|
critical x^3-3x^2-9x
|
critical\:x^{3}-3x^{2}-9x
|
critical 2x^3-6x^2-18+2
|
critical\:2x^{3}-6x^{2}-18+2
|
critical f(x)=x^{2/3}(2-x)
|
critical\:f(x)=x^{\frac{2}{3}}(2-x)
|
critical points x^2-2x+7
|
critical\:points\:x^{2}-2x+7
|
critical f(x,y)=(x^2+y^2)e^{x^2-y^2}
|
critical\:f(x,y)=(x^{2}+y^{2})e^{x^{2}-y^{2}}
|
critical (2-x^2)/(3x^2-1)
|
critical\:\frac{2-x^{2}}{3x^{2}-1}
|
critical f(x)=2x-x^2-xy
|
critical\:f(x)=2x-x^{2}-xy
|
critical ln(x^2+y^2+1)
|
critical\:\ln(x^{2}+y^{2}+1)
|
critical f(x)=ln(1+8x^3)
|
critical\:f(x)=\ln(1+8x^{3})
|
f(x)=In(1+4x)
|
f(x)=In(1+4x)
|
critical f(x)=x^3-9x^2
|
critical\:f(x)=x^{3}-9x^{2}
|
critical f(x)=x^3-12x-2
|
critical\:f(x)=x^{3}-12x-2
|
critical (2x+4)^3(x-6)
|
critical\:(2x+4)^{3}(x-6)
|
critical y^2-x^2
|
critical\:y^{2}-x^{2}
|
domain f(x)=(2x-2)/(x^2-x)-4
|
domain\:f(x)=\frac{2x-2}{x^{2}-x}-4
|
critical y= 1/(x-1)
|
critical\:y=\frac{1}{x-1}
|
critical f(x)=x^3+3x^2-105x
|
critical\:f(x)=x^{3}+3x^{2}-105x
|
critical 1+1/x-1/(x^2)
|
critical\:1+\frac{1}{x}-\frac{1}{x^{2}}
|
critical (e^{-2x}(-e^x+1))/((1+e^{-x))^3}
|
critical\:\frac{e^{-2x}(-e^{x}+1)}{(1+e^{-x})^{3}}
|
critical x^2sqrt(x+3)
|
critical\:x^{2}\sqrt{x+3}
|
critical f(x)=e^{-2.5x^2}
|
critical\:f(x)=e^{-2.5x^{2}}
|
critical f(x)=3x^4-4x^3+1
|
critical\:f(x)=3x^{4}-4x^{3}+1
|
P(x,y)=x^3y^2-5x^5y^4+y^3
|
P(x,y)=x^{3}y^{2}-5x^{5}y^{4}+y^{3}
|
critical f(x)=(x^2)/2+1/x
|
critical\:f(x)=\frac{x^{2}}{2}+\frac{1}{x}
|
critical f(x)=(x+9)/(x+2)
|
critical\:f(x)=\frac{x+9}{x+2}
|
critical points f(x)=(x+8)^8
|
critical\:points\:f(x)=(x+8)^{8}
|
critical f(x)=(e^{-x^2})(-2x)
|
critical\:f(x)=(e^{-x^{2}})(-2x)
|
critical f(x)=x^3-6x^2+8
|
critical\:f(x)=x^{3}-6x^{2}+8
|
critical f(x)=x^{4/3}+4x^{1/3}
|
critical\:f(x)=x^{\frac{4}{3}}+4x^{\frac{1}{3}}
|
critical (x+3)/(sqrt(x^2-9))
|
critical\:\frac{x+3}{\sqrt{x^{2}-9}}
|
critical f(x)=2x^3+6x^2-18x
|
critical\:f(x)=2x^{3}+6x^{2}-18x
|
critical 2cos^2(x)
|
critical\:2\cos^{2}(x)
|
critical f(x)=x^2e^{15x}
|
critical\:f(x)=x^{2}e^{15x}
|
critical f(x)=x^{-5}ln(x)
|
critical\:f(x)=x^{-5}\ln(x)
|
f(x)=e^xInx
|
f(x)=e^{x}Inx
|
critical f(x)=3x*e^x
|
critical\:f(x)=3x\cdot\:e^{x}
|
range f(x)=-x^2-5
|
range\:f(x)=-x^{2}-5
|
critical f(x)=(2-8x)^4(x^2-9)^3
|
critical\:f(x)=(2-8x)^{4}(x^{2}-9)^{3}
|
critical f(x)=(x-1)/(x^2-1)
|
critical\:f(x)=\frac{x-1}{x^{2}-1}
|
critical f(x)=(x^2-1)^{2/3}
|
critical\:f(x)=(x^{2}-1)^{\frac{2}{3}}
|
critical f(x)=sin(x+π/4)
|
critical\:f(x)=\sin(x+\frac{π}{4})
|
critical x^{2/3}(x-5)
|
critical\:x^{\frac{2}{3}}(x-5)
|
critical (4x-3)^{1/3}
|
critical\:(4x-3)^{\frac{1}{3}}
|
critical f(x)=(4x)/(x^2-36)
|
critical\:f(x)=\frac{4x}{x^{2}-36}
|
critical x^3-9x
|
critical\:x^{3}-9x
|
critical (2x^2-3x)/(x-2)
|
critical\:\frac{2x^{2}-3x}{x-2}
|
critical f(x,y)=(x^2-1)y
|
critical\:f(x,y)=(x^{2}-1)y
|
domain (1-9sqrt(x))/x
|
domain\:\frac{1-9\sqrt{x}}{x}
|
critical f(x)=36x^3-11x
|
critical\:f(x)=36x^{3}-11x
|
critical f(x)=(x^3)/3-2x^2-5x
|
critical\:f(x)=\frac{x^{3}}{3}-2x^{2}-5x
|
critical y^2-y
|
critical\:y^{2}-y
|
critical f(x,y)=-384x+2x^3+6xy^2-3y^3
|
critical\:f(x,y)=-384x+2x^{3}+6xy^{2}-3y^{3}
|
critical f(x)=(8-4x)e^x
|
critical\:f(x)=(8-4x)e^{x}
|