critical f(x)=10+12x-3x^2-2x^3
|
critical\:f(x)=10+12x-3x^{2}-2x^{3}
|
critical 3-x^2
|
critical\:3-x^{2}
|
f(x,y)=6xy^3+5x^4+17
|
f(x,y)=6xy^{3}+5x^{4}+17
|
critical (3x)/(x^2-25)
|
critical\:\frac{3x}{x^{2}-25}
|
critical f(x,y)=2x^3+6xy^2-3y^3-150x
|
critical\:f(x,y)=2x^{3}+6xy^{2}-3y^{3}-150x
|
domain sqrt((1-x)/(2+x))
|
domain\:\sqrt{\frac{1-x}{2+x}}
|
critical f(x)=(4x^2)/(x^2+49)
|
critical\:f(x)=\frac{4x^{2}}{x^{2}+49}
|
critical f(x)=r^3-13.5r^2-1.5s^2+24r+18s+23
|
critical\:f(x)=r^{3}-13.5r^{2}-1.5s^{2}+24r+18s+23
|
critical f(x)=e^{-x^2-y^2}
|
critical\:f(x)=e^{-x^{2}-y^{2}}
|
critical f(x)= 1/2 x-sin(x)
|
critical\:f(x)=\frac{1}{2}x-\sin(x)
|
critical f(x,y)=y^2+xy+3y+2x+3
|
critical\:f(x,y)=y^{2}+xy+3y+2x+3
|
critical y= 1/((x-x^2))
|
critical\:y=\frac{1}{(x-x^{2})}
|
critical y=cos(x)
|
critical\:y=\cos(x)
|
critical f(x)=3x^4+20x^3-6x^2
|
critical\:f(x)=3x^{4}+20x^{3}-6x^{2}
|
critical x^3+3x^2-24x+12
|
critical\:x^{3}+3x^{2}-24x+12
|
critical f(x)=-7(x+1)^2+3x+7,(-1,3)
|
critical\:f(x)=-7(x+1)^{2}+3x+7,(-1,3)
|
intercepts f(x)=((x-1)(x+2))/((x+1)(x-3))
|
intercepts\:f(x)=\frac{(x-1)(x+2)}{(x+1)(x-3)}
|
critical f(x)=(x^2+11)(4-x^2)
|
critical\:f(x)=(x^{2}+11)(4-x^{2})
|
critical f(x)=-3x^2+36x
|
critical\:f(x)=-3x^{2}+36x
|
critical f(x)= 1/(x+2)
|
critical\:f(x)=\frac{1}{x+2}
|
critical f(x,y)=(x+2)^2+(y+1)^2+(-1/2 x+3/2 y-9/2)^2
|
critical\:f(x,y)=(x+2)^{2}+(y+1)^{2}+(-\frac{1}{2}x+\frac{3}{2}y-\frac{9}{2})^{2}
|
critical f(x)=((x^2-1))/(x^2+2x-3)
|
critical\:f(x)=\frac{(x^{2}-1)}{x^{2}+2x-3}
|
f(x,y)=((x+y)^2)/(x^2+y^2)
|
f(x,y)=\frac{(x+y)^{2}}{x^{2}+y^{2}}
|
critical f(x)=(x^2-10x)^4
|
critical\:f(x)=(x^{2}-10x)^{4}
|
critical f(x)=sqrt(t)(1-t)
|
critical\:f(x)=\sqrt{t}(1-t)
|
critical f(x,y)=x^2-xy+y^2+5
|
critical\:f(x,y)=x^{2}-xy+y^{2}+5
|
critical f(x)=4x+9x^{-1}
|
critical\:f(x)=4x+9x^{-1}
|
range f(x)=x^2-6x+5
|
range\:f(x)=x^{2}-6x+5
|
critical f(x,y)=2x^3-3xy+3y^3
|
critical\:f(x,y)=2x^{3}-3xy+3y^{3}
|
critical x^3+x^2-x
|
critical\:x^{3}+x^{2}-x
|
critical f(x)=(4x)/(x^2+25)
|
critical\:f(x)=\frac{4x}{x^{2}+25}
|
critical f(x)=sin(x)-cos(x),0<= x<= 2π
|
critical\:f(x)=\sin(x)-\cos(x),0\le\:x\le\:2π
|
critical f(x)=x^2+(250)/x
|
critical\:f(x)=x^{2}+\frac{250}{x}
|
f(x,y)=2x^2-4y^3
|
f(x,y)=2x^{2}-4y^{3}
|
critical h(x)=(e^{4x})/(x+1)
|
critical\:h(x)=\frac{e^{4x}}{x+1}
|
critical f(x)= x/(x^2+64)
|
critical\:f(x)=\frac{x}{x^{2}+64}
|
critical (4x)/(x^2+1)-1
|
critical\:\frac{4x}{x^{2}+1}-1
|
critical f(x)=x^2-4xy+2y^2+4x+8y+4
|
critical\:f(x)=x^{2}-4xy+2y^{2}+4x+8y+4
|
domain f(x)=((5x+9))/(8x)
|
domain\:f(x)=\frac{(5x+9)}{8x}
|
critical f(x,y)=x^2-1/2 y^2+3x
|
critical\:f(x,y)=x^{2}-\frac{1}{2}y^{2}+3x
|
f(x,y)=e^{((x^6+y^6))/6}
|
f(x,y)=e^{\frac{(x^{6}+y^{6})}{6}}
|
critical 6x^5-60x^4+232x^3-432x^2+386x-66
|
critical\:6x^{5}-60x^{4}+232x^{3}-432x^{2}+386x-66
|
critical x^3+y^3-3x-3y
|
critical\:x^{3}+y^{3}-3x-3y
|
critical f(x)= x/(3x^2-1)
|
critical\:f(x)=\frac{x}{3x^{2}-1}
|
critical (x+3)e^{-2x}
|
critical\:(x+3)e^{-2x}
|
critical f(x)=x^5+x^4
|
critical\:f(x)=x^{5}+x^{4}
|
critical f(x,y)=-24x+2x^3+6xy^2-3y^3
|
critical\:f(x,y)=-24x+2x^{3}+6xy^{2}-3y^{3}
|
critical 2x^2
|
critical\:2x^{2}
|
critical f(x)=6x^2-6x-36
|
critical\:f(x)=6x^{2}-6x-36
|
intercepts (6x)/7 (4x)/3
|
intercepts\:\frac{6x}{7}\frac{4x}{3}
|
f(x,y)=x^3+3xy^2
|
f(x,y)=x^{3}+3xy^{2}
|
critical f(x)=(x^4-3x^2)/((x^2-1)^2)
|
critical\:f(x)=\frac{x^{4}-3x^{2}}{(x^{2}-1)^{2}}
|
f(x)=In(x+4)
|
f(x)=In(x+4)
|
critical cos(x)+2x
|
critical\:\cos(x)+2x
|
critical x^4+x^3+x^2+1
|
critical\:x^{4}+x^{3}+x^{2}+1
|
critical y=x^4-12x^3+48x^2-64x
|
critical\:y=x^{4}-12x^{3}+48x^{2}-64x
|
critical 4x^2-6x
|
critical\:4x^{2}-6x
|
critical f(x)=x^2-6xy+10y^2-4y
|
critical\:f(x)=x^{2}-6xy+10y^{2}-4y
|
critical x^3-x+1
|
critical\:x^{3}-x+1
|
critical f(x)=x^3-12x^2+36x+5
|
critical\:f(x)=x^{3}-12x^{2}+36x+5
|
critical points f(x)=xe^{3x}
|
critical\:points\:f(x)=xe^{3x}
|
critical f(x,y)=-3x^2y+y^3-3x^2-3y^2+1
|
critical\:f(x,y)=-3x^{2}y+y^{3}-3x^{2}-3y^{2}+1
|
critical 2x+(72)/x
|
critical\:2x+\frac{72}{x}
|
critical f(x)=-(2(x^2-1))/(x^2-4)
|
critical\:f(x)=-\frac{2(x^{2}-1)}{x^{2}-4}
|
critical f(x)=(x-2)e^x
|
critical\:f(x)=(x-2)e^{x}
|
critical f(x,y)=xe^{-2x^2-2y^2}
|
critical\:f(x,y)=xe^{-2x^{2}-2y^{2}}
|
critical f(x)=x^4+x^2(y-2)+9(y-1)^2
|
critical\:f(x)=x^{4}+x^{2}(y-2)+9(y-1)^{2}
|
critical f(x)=x^4-2x^2+y^2-4y
|
critical\:f(x)=x^{4}-2x^{2}+y^{2}-4y
|
critical f(x)=4x^3-6x^2
|
critical\:f(x)=4x^{3}-6x^{2}
|
critical f(x)=x^3-9x^2+24x-7
|
critical\:f(x)=x^{3}-9x^{2}+24x-7
|
critical f(x)=x^2-2xy+2y^2+4x-8y+24
|
critical\:f(x)=x^{2}-2xy+2y^{2}+4x-8y+24
|
line (1,5)(3,6)
|
line\:(1,5)(3,6)
|
critical f(x)= x/((1-x))
|
critical\:f(x)=\frac{x}{(1-x)}
|
f(x)=In(x-2)
|
f(x)=In(x-2)
|
critical y=(x^2)/(x-2)
|
critical\:y=\frac{x^{2}}{x-2}
|
critical 3t^4+4t^3-6t^2
|
critical\:3t^{4}+4t^{3}-6t^{2}
|
critical 4x^3-8x
|
critical\:4x^{3}-8x
|
critical 4x^3-3x
|
critical\:4x^{3}-3x
|
f(x)=In(5-2x)
|
f(x)=In(5-2x)
|
critical e^{x^2+2x}
|
critical\:e^{x^{2}+2x}
|
critical x/((x-3)^2)
|
critical\:\frac{x}{(x-3)^{2}}
|
critical f(x)=x^2-2x-1
|
critical\:f(x)=x^{2}-2x-1
|
domain f(x)=sqrt(4-x^2)-sqrt(x+1)
|
domain\:f(x)=\sqrt{4-x^{2}}-\sqrt{x+1}
|
critical f(x)=e^{3x}(18x^2+2)
|
critical\:f(x)=e^{3x}(18x^{2}+2)
|
critical f(x)=x^3-4x^2+x
|
critical\:f(x)=x^{3}-4x^{2}+x
|
critical f(x)=2x
|
critical\:f(x)=2x
|
critical f(x)=((4x-12))/((x-2)^2)
|
critical\:f(x)=\frac{(4x-12)}{(x-2)^{2}}
|
critical f(x,y)=(1-x^2)^2-y^2
|
critical\:f(x,y)=(1-x^{2})^{2}-y^{2}
|
critical f(x)=(x^2)
|
critical\:f(x)=(x^{2})
|
critical f(x,y)=x^2y-y^3-x^2-y^2+1
|
critical\:f(x,y)=x^{2}y-y^{3}-x^{2}-y^{2}+1
|
critical f(x)= 2/3 x^{3/2}-2/5 x^{5/2}
|
critical\:f(x)=\frac{2}{3}x^{\frac{3}{2}}-\frac{2}{5}x^{\frac{5}{2}}
|
critical f(x)=3x^{1/2}-x^{3/2}
|
critical\:f(x)=3x^{\frac{1}{2}}-x^{\frac{3}{2}}
|
critical y=(40-x}{10}+\frac{sqrt(x^2+30^2))/5
|
critical\:y=\frac{40-x}{10}+\frac{\sqrt{x^{2}+30^{2}}}{5}
|
domain f(x)=sqrt((1+2x)/x)
|
domain\:f(x)=\sqrt{\frac{1+2x}{x}}
|
inflection points f(x)=x^3-3x^2+4
|
inflection\:points\:f(x)=x^{3}-3x^{2}+4
|
slope 2x-y=5
|
slope\:2x-y=5
|
critical f(x)=x^2+(54)/x
|
critical\:f(x)=x^{2}+\frac{54}{x}
|
critical f(x)=(x^2-2x+4)/(x-2)
|
critical\:f(x)=\frac{x^{2}-2x+4}{x-2}
|
critical e^{3x}-3e^x
|
critical\:e^{3x}-3e^{x}
|
critical f(x)=(x^2-5x+6)/(x^2)
|
critical\:f(x)=\frac{x^{2}-5x+6}{x^{2}}
|