critical x+(64)/x
|
critical\:x+\frac{64}{x}
|
critical f(x)=5sin(x)cos(x),(0,2π)
|
critical\:f(x)=5\sin(x)\cos(x),(0,2π)
|
critical f(x)=x^2-6x+9<16
|
critical\:f(x)=x^{2}-6x+9<16
|
critical f(x,y)=xy-x^2y-xy^2
|
critical\:f(x,y)=xy-x^{2}y-xy^{2}
|
critical x^2+5x+6
|
critical\:x^{2}+5x+6
|
domain-2x+2
|
domain\:-2x+2
|
critical f(x,y)=x^2+3xy+4y^2-6x+2y
|
critical\:f(x,y)=x^{2}+3xy+4y^{2}-6x+2y
|
critical f(x)=(e^x)/(x+1)
|
critical\:f(x)=\frac{e^{x}}{x+1}
|
critical f(x)=3x^{2/3}-x
|
critical\:f(x)=3x^{\frac{2}{3}}-x
|
critical 1/(x^3)
|
critical\:\frac{1}{x^{3}}
|
critical x^3-18x^2+81x
|
critical\:x^{3}-18x^{2}+81x
|
critical f(x)=8xy+2x^4+2y^4
|
critical\:f(x)=8xy+2x^{4}+2y^{4}
|
critical 2/(x^3)
|
critical\:\frac{2}{x^{3}}
|
critical f(x)=x^3-15x^2
|
critical\:f(x)=x^{3}-15x^{2}
|
critical e^{x^2+0.5y^2-5xy-3x}
|
critical\:e^{x^{2}+0.5y^{2}-5xy-3x}
|
critical f(x)=((x+1)^3)/((x-1)^2)
|
critical\:f(x)=\frac{(x+1)^{3}}{(x-1)^{2}}
|
domain 5^x
|
domain\:5^{x}
|
critical f(x)=3x^2-x^3
|
critical\:f(x)=3x^{2}-x^{3}
|
critical f(x)=(x^2-1)^6
|
critical\:f(x)=(x^{2}-1)^{6}
|
critical f(x,y)=x^3-2y^2-2y^4+3x^2y
|
critical\:f(x,y)=x^{3}-2y^{2}-2y^{4}+3x^{2}y
|
critical f(x)=x^2(x-12)^2
|
critical\:f(x)=x^{2}(x-12)^{2}
|
critical f(x)=sin^2(6x)+cos(6x)
|
critical\:f(x)=\sin^{2}(6x)+\cos(6x)
|
critical f(x)=x^5-5x+3
|
critical\:f(x)=x^{5}-5x+3
|
critical f(x)=6x^3-2x
|
critical\:f(x)=6x^{3}-2x
|
critical f(x)=sin(2x)-2cos(x)
|
critical\:f(x)=\sin(2x)-2\cos(x)
|
critical f(x)=x^6e^x
|
critical\:f(x)=x^{6}e^{x}
|
critical f(x)=(x^2)/(x^2+1)
|
critical\:f(x)=\frac{x^{2}}{x^{2}+1}
|
inverse f(x)=(x+10)/(x-5)
|
inverse\:f(x)=\frac{x+10}{x-5}
|
critical f(w)=(w^2+2w+1)/(3w-5)
|
critical\:f(w)=\frac{w^{2}+2w+1}{3w-5}
|
critical f(x)=(x+1)/(x^2)
|
critical\:f(x)=\frac{x+1}{x^{2}}
|
critical f(x)=x^3(x+2)
|
critical\:f(x)=x^{3}(x+2)
|
critical f(x)=\sqrt[3]{x^2-2x-3}
|
critical\:f(x)=\sqrt[3]{x^{2}-2x-3}
|
critical f(x)=x^2y+y^3-12y
|
critical\:f(x)=x^{2}y+y^{3}-12y
|
critical y=x^{3/2}-3x^{5/2}
|
critical\:y=x^{\frac{3}{2}}-3x^{\frac{5}{2}}
|
critical f(x)=2x^3-3x^2y-3y^2
|
critical\:f(x)=2x^{3}-3x^{2}y-3y^{2}
|
critical f(x,y)=-11+17x^2+xy+y^2
|
critical\:f(x,y)=-11+17x^{2}+xy+y^{2}
|
critical f(x)=(x-3)/(x^2-5x+6)
|
critical\:f(x)=\frac{x-3}{x^{2}-5x+6}
|
critical 1/2 x^4-3xy+3y^4
|
critical\:\frac{1}{2}x^{4}-3xy+3y^{4}
|
inverse f(x)=arccsc(x)
|
inverse\:f(x)=\arccsc(x)
|
critical f(x)=y^2-x^2
|
critical\:f(x)=y^{2}-x^{2}
|
critical f(x)=x^3+3x^2+3x+1
|
critical\:f(x)=x^{3}+3x^{2}+3x+1
|
critical f(x,y)=ysqrt(x)-y^2-2x+7y
|
critical\:f(x,y)=y\sqrt{x}-y^{2}-2x+7y
|
critical f(x,y)=x^2+4xy+y^2+y^3
|
critical\:f(x,y)=x^{2}+4xy+y^{2}+y^{3}
|
critical f(x)=sqrt(|x|)+x/7
|
critical\:f(x)=\sqrt{\left|x\right|}+\frac{x}{7}
|
critical f(x)=18cos(x)+9sin^2(x)
|
critical\:f(x)=18\cos(x)+9\sin^{2}(x)
|
critical f(x)= 1/(sqrt(2π))e^{-(x^2)/2}
|
critical\:f(x)=\frac{1}{\sqrt{2π}}e^{-\frac{x^{2}}{2}}
|
critical f(x)=2x^3+3x^2+4
|
critical\:f(x)=2x^{3}+3x^{2}+4
|
critical f(x)=(x^2+x)*(x^2-1)^{-1}
|
critical\:f(x)=(x^{2}+x)\cdot\:(x^{2}-1)^{-1}
|
critical x^4+2x^3-2x^2+4
|
critical\:x^{4}+2x^{3}-2x^{2}+4
|
domain f(x)=-3259
|
domain\:f(x)=-3259
|
critical f(x)=(x^2+x)/(x^2-1)
|
critical\:f(x)=\frac{x^{2}+x}{x^{2}-1}
|
critical 2x-3y+6
|
critical\:2x-3y+6
|
critical x/(sqrt(x^2+2))
|
critical\:\frac{x}{\sqrt{x^{2}+2}}
|
critical x^4(x-3)^3
|
critical\:x^{4}(x-3)^{3}
|
critical f(x)=(x-2)/(x+2)
|
critical\:f(x)=\frac{x-2}{x+2}
|
critical f(x)=x^4-2x^2-3
|
critical\:f(x)=x^{4}-2x^{2}-3
|
critical xe^{2x}
|
critical\:xe^{2x}
|
critical x^2-6xy+2y^2+10x+2y-5
|
critical\:x^{2}-6xy+2y^{2}+10x+2y-5
|
critical x^2-x-ln(x)
|
critical\:x^{2}-x-\ln(x)
|
critical f(x)=-2x^2+8x+7
|
critical\:f(x)=-2x^{2}+8x+7
|
parallel y-8x-7y=-6
|
parallel\:y-8x-7y=-6
|
parity (x+7)^3-2
|
parity\:(x+7)^{3}-2
|
critical f(x)=2sqrt(x)-x
|
critical\:f(x)=2\sqrt{x}-x
|
critical y=x^2-4x-1
|
critical\:y=x^{2}-4x-1
|
critical f(x)=3x^2+8x+4
|
critical\:f(x)=3x^{2}+8x+4
|
critical f(x)=5x^2+7x-2
|
critical\:f(x)=5x^{2}+7x-2
|
critical f(x)=(x-7)(x+1)(x+5)
|
critical\:f(x)=(x-7)(x+1)(x+5)
|
critical x^2sqrt(x+5)
|
critical\:x^{2}\sqrt{x+5}
|
critical f(x,y)=x^3-3xy+y^3
|
critical\:f(x,y)=x^{3}-3xy+y^{3}
|
critical (16x)/((x^2+4)^2)
|
critical\:\frac{16x}{(x^{2}+4)^{2}}
|
critical f(x)=(3x)/(x^2-36)
|
critical\:f(x)=\frac{3x}{x^{2}-36}
|
critical f(x,y)=2x^3-6x^2+y^3+21y^2
|
critical\:f(x,y)=2x^{3}-6x^{2}+y^{3}+21y^{2}
|
distance (-1,-1)(1,6)
|
distance\:(-1,-1)(1,6)
|
critical x-2cos(x)
|
critical\:x-2\cos(x)
|
critical f(x)=cos(x)+(sqrt(3))/2 x
|
critical\:f(x)=\cos(x)+\frac{\sqrt{3}}{2}x
|
critical f(x)=x^3-6x^2+12x-8
|
critical\:f(x)=x^{3}-6x^{2}+12x-8
|
critical f(x)=(x^3)/3-9x
|
critical\:f(x)=\frac{x^{3}}{3}-9x
|
critical f(x,y)=x^3+y^3-12xy
|
critical\:f(x,y)=x^{3}+y^{3}-12xy
|
f(x)=In(10-x)
|
f(x)=In(10-x)
|
critical f(x)=x^3-3x^2-9x+8
|
critical\:f(x)=x^{3}-3x^{2}-9x+8
|
critical f(x)=x^3-3x^2-9x-5
|
critical\:f(x)=x^{3}-3x^{2}-9x-5
|
critical (6-x)(6-y)(x+y-6)
|
critical\:(6-x)(6-y)(x+y-6)
|
critical x^{2/3}(x+2)
|
critical\:x^{\frac{2}{3}}(x+2)
|
asymptotes f(x)=e^{x+1}
|
asymptotes\:f(x)=e^{x+1}
|
critical f(x,y)=x^3
|
critical\:f(x,y)=x^{3}
|
critical f(x)=x^{1/9}-x^{-8/9}
|
critical\:f(x)=x^{\frac{1}{9}}-x^{-\frac{8}{9}}
|
critical f(x,y)=x^4+y^4-2x^2-2y^2+4xy
|
critical\:f(x,y)=x^{4}+y^{4}-2x^{2}-2y^{2}+4xy
|
critical f(x)=x^2e^{17x}
|
critical\:f(x)=x^{2}e^{17x}
|
critical f(x)=x^{1/2}(x-4)
|
critical\:f(x)=x^{\frac{1}{2}}(x-4)
|
critical f(x)=15x^4-15x^2
|
critical\:f(x)=15x^{4}-15x^{2}
|
critical x+cot(x/2)
|
critical\:x+\cot(\frac{x}{2})
|
critical f(x)=(x^2+5x+4)/(x^2)
|
critical\:f(x)=\frac{x^{2}+5x+4}{x^{2}}
|
critical x^3-27
|
critical\:x^{3}-27
|
critical f(x)=x^{2/5}(x-4)
|
critical\:f(x)=x^{\frac{2}{5}}(x-4)
|
intercepts f(x)=x^5-5x^4+93
|
intercepts\:f(x)=x^{5}-5x^{4}+93
|
critical f(x)=(3x-6)^3
|
critical\:f(x)=(3x-6)^{3}
|
critical f(x)=(e^{2x})/(x+1)
|
critical\:f(x)=\frac{e^{2x}}{x+1}
|
critical f(x)=200+8x^3+x^4
|
critical\:f(x)=200+8x^{3}+x^{4}
|
P(r,t)=(1+r/n)^t
|
P(r,t)=(1+\frac{r}{n})^{t}
|
critical f(x,y)=e^{(x^2+y^2+4x)}
|
critical\:f(x,y)=e^{(x^{2}+y^{2}+4x)}
|