critical y=3x^{2/3}-2x
|
critical\:y=3x^{\frac{2}{3}}-2x
|
critical f(x)=4x^3+19/2 x^2+5x
|
critical\:f(x)=4x^{3}+\frac{19}{2}x^{2}+5x
|
critical (5x)/(x^2-9)
|
critical\:\frac{5x}{x^{2}-9}
|
critical f(x)=x^4-2x^2+5
|
critical\:f(x)=x^{4}-2x^{2}+5
|
critical f(x,y)=x^2-(y^3)/3-(x^2y)/2+6y
|
critical\:f(x,y)=x^{2}-\frac{y^{3}}{3}-\frac{x^{2}y}{2}+6y
|
monotone intervals f(x)=(x-3)^2-4
|
monotone\:intervals\:f(x)=(x-3)^{2}-4
|
critical f(x)=12x-3x^2
|
critical\:f(x)=12x-3x^{2}
|
f(x,y)=ln(x^4+y^6+1)
|
f(x,y)=\ln(x^{4}+y^{6}+1)
|
critical f(x,y)=e^{(x^2-y^2)}
|
critical\:f(x,y)=e^{(x^{2}-y^{2})}
|
f(x,y)=-x^2-4y^2-ax+axy
|
f(x,y)=-x^{2}-4y^{2}-ax+axy
|
critical f(x)=sqrt(x^2-81)
|
critical\:f(x)=\sqrt{x^{2}-81}
|
critical f(x)=x^3-6x^2+2
|
critical\:f(x)=x^{3}-6x^{2}+2
|
critical f(x)=x^3-6x^2+1
|
critical\:f(x)=x^{3}-6x^{2}+1
|
critical f(x)=-2e^{-x^2}x
|
critical\:f(x)=-2e^{-x^{2}}x
|
critical f(x,y)=2x^2+2xy+ay^2+2x-3
|
critical\:f(x,y)=2x^{2}+2xy+ay^{2}+2x-3
|
critical f(x)= 2/((x^2-x))
|
critical\:f(x)=\frac{2}{(x^{2}-x)}
|
range (-4-3x)/(7x-5)
|
range\:\frac{-4-3x}{7x-5}
|
critical f(x)=(x+2)/(x-1)
|
critical\:f(x)=\frac{x+2}{x-1}
|
critical 2x^3+xy^2+5x^2+y^2
|
critical\:2x^{3}+xy^{2}+5x^{2}+y^{2}
|
critical f(x,y)= 1/3 x^3+y^3+2x^2-12x-3y
|
critical\:f(x,y)=\frac{1}{3}x^{3}+y^{3}+2x^{2}-12x-3y
|
critical f(x,y)=4x^2-12x+y^2+2y-10
|
critical\:f(x,y)=4x^{2}-12x+y^{2}+2y-10
|
critical x/((x-1)^2)
|
critical\:\frac{x}{(x-1)^{2}}
|
critical f(x)=((x^2+1))/(2x)
|
critical\:f(x)=\frac{(x^{2}+1)}{2x}
|
critical y=-(cos(2x))/2-2sin(x)
|
critical\:y=-\frac{\cos(2x)}{2}-2\sin(x)
|
y=(2e^x)(In^3x)+5x
|
y=(2e^{x})(In^{3}x)+5x
|
critical sqrt(x^2-25)
|
critical\:\sqrt{x^{2}-25}
|
critical f(x)=(2x)/(x^2+4)
|
critical\:f(x)=\frac{2x}{x^{2}+4}
|
intercepts f(x)=-3x^2-x+4
|
intercepts\:f(x)=-3x^{2}-x+4
|
y=4^x
|
y=4^{x}
|
critical (x^2-2x+4)/(x-2)
|
critical\:\frac{x^{2}-2x+4}{x-2}
|
critical f(x)=5x^{2/3}-x^{5/3}
|
critical\:f(x)=5x^{\frac{2}{3}}-x^{\frac{5}{3}}
|
critical x/(x^2+25)
|
critical\:\frac{x}{x^{2}+25}
|
critical f(x)=4x^3-12x^2+8x
|
critical\:f(x)=4x^{3}-12x^{2}+8x
|
critical f(x)=x(x+4)^{2/3}
|
critical\:f(x)=x(x+4)^{\frac{2}{3}}
|
critical f(x)=xsqrt(x^2+9)
|
critical\:f(x)=x\sqrt{x^{2}+9}
|
critical f(x)=(x^2)/(x^2-36)
|
critical\:f(x)=\frac{x^{2}}{x^{2}-36}
|
critical f(x)=(24)/(x^2+12)
|
critical\:f(x)=\frac{24}{x^{2}+12}
|
critical x^2+xy+3x+2y+5
|
critical\:x^{2}+xy+3x+2y+5
|
critical f(x)= x/(x^2+15x+50)
|
critical\:f(x)=\frac{x}{x^{2}+15x+50}
|
line (-3,3)(3,-5)
|
line\:(-3,3)(3,-5)
|
critical (1-x^2)/((1+x^2)^2)
|
critical\:\frac{1-x^{2}}{(1+x^{2})^{2}}
|
critical f(x)=2(x-4)^2(y^2+3)+3y^2+12y
|
critical\:f(x)=2(x-4)^{2}(y^{2}+3)+3y^{2}+12y
|
critical x^2-2
|
critical\:x^{2}-2
|
critical f(x)=x^3-2xy+y^2+4
|
critical\:f(x)=x^{3}-2xy+y^{2}+4
|
critical-2x^2-12x-13
|
critical\:-2x^{2}-12x-13
|
critical x^3e^x
|
critical\:x^{3}e^{x}
|
critical f(x,y)=x^3+y^3-2xy
|
critical\:f(x,y)=x^{3}+y^{3}-2xy
|
critical f(x)=8x^2+14xy+3y^2+10x-4
|
critical\:f(x)=8x^{2}+14xy+3y^{2}+10x-4
|
critical f(x)=2x^3+6x^2-5
|
critical\:f(x)=2x^{3}+6x^{2}-5
|
critical f(x)=sin(x)+cos(x),0<= x<= 2π
|
critical\:f(x)=\sin(x)+\cos(x),0\le\:x\le\:2π
|
extreme points f(x)=-4x^2-4,[-5,4]
|
extreme\:points\:f(x)=-4x^{2}-4,[-5,4]
|
critical f(x,y)=2mx^3-3x^2y-3y^2
|
critical\:f(x,y)=2mx^{3}-3x^{2}y-3y^{2}
|
f(x,y)=x^4+y^4-2x^2-32y
|
f(x,y)=x^{4}+y^{4}-2x^{2}-32y
|
critical y=|x^2+6x|
|
critical\:y=\left|x^{2}+6x\right|
|
critical f(x)=(x^2)/(x^2-81)
|
critical\:f(x)=\frac{x^{2}}{x^{2}-81}
|
critical f(x)=6x-12
|
critical\:f(x)=6x-12
|
critical f(x,y)=x^2-y^2sqrt(1-x^2-y^2)
|
critical\:f(x,y)=x^{2}-y^{2}\sqrt{1-x^{2}-y^{2}}
|
critical f(x)= 1/(sqrt(x))
|
critical\:f(x)=\frac{1}{\sqrt{x}}
|
critical e^{-|x|}
|
critical\:e^{-\left|x\right|}
|
critical y=sqrt(x(a-x))
|
critical\:y=\sqrt{x(a-x)}
|
critical f(x,y)=y^4+4x^2y^2-2y^2+2x^2-1
|
critical\:f(x,y)=y^{4}+4x^{2}y^{2}-2y^{2}+2x^{2}-1
|
inverse f(x)=3x^3-2
|
inverse\:f(x)=3x^{3}-2
|
critical f(x)=120x^2-2x^3
|
critical\:f(x)=120x^{2}-2x^{3}
|
critical f(x)= x/(-2-ln(x))
|
critical\:f(x)=\frac{x}{-2-\ln(x)}
|
critical f(x)=x^{2/3}(x^2-1)
|
critical\:f(x)=x^{\frac{2}{3}}(x^{2}-1)
|
critical y=(x-3)/(x^2-3x+9)
|
critical\:y=\frac{x-3}{x^{2}-3x+9}
|
critical f(x)=-2csc(3x+π)-1
|
critical\:f(x)=-2\csc(3x+π)-1
|
critical f(x)= x/((1+x^2))
|
critical\:f(x)=\frac{x}{(1+x^{2})}
|
critical sin^2(x)-cos(x)
|
critical\:\sin^{2}(x)-\cos(x)
|
critical f(x)=sin(x)-x
|
critical\:f(x)=\sin(x)-x
|
critical f(x)=(x+4)^2(x-2)
|
critical\:f(x)=(x+4)^{2}(x-2)
|
critical f(x)=x^2-16x^4
|
critical\:f(x)=x^{2}-16x^{4}
|
y=-2x+3
|
y=-2x+3
|
critical x^2+xy+y^2+3x-3y+4
|
critical\:x^{2}+xy+y^{2}+3x-3y+4
|
critical f(x)=x^3+4x+9
|
critical\:f(x)=x^{3}+4x+9
|
critical f(x)=2x^3-3x^2-726x-10
|
critical\:f(x)=2x^{3}-3x^{2}-726x-10
|
critical f(x,y)=3x^3+3/2 y-18xy+17
|
critical\:f(x,y)=3x^{3}+\frac{3}{2}y-18xy+17
|
critical f(x,y)=2x^3-3mx^2y-3y^2
|
critical\:f(x,y)=2x^{3}-3mx^{2}y-3y^{2}
|
critical f(x)=2x^4-16x^3+20x^2-7
|
critical\:f(x)=2x^{4}-16x^{3}+20x^{2}-7
|
critical f(x)=(4x)/(x^2+1)-1
|
critical\:f(x)=\frac{4x}{x^{2}+1}-1
|
critical f(x)=-cos(x)-sin(x)
|
critical\:f(x)=-\cos(x)-\sin(x)
|
critical f(x)=9x^2-x^3-3
|
critical\:f(x)=9x^{2}-x^{3}-3
|
critical f(x)=x^4-6x^2+4
|
critical\:f(x)=x^{4}-6x^{2}+4
|
asymptotes f(x)=(-2x+1)/(x-5)
|
asymptotes\:f(x)=\frac{-2x+1}{x-5}
|
critical f(x)= 2/3 x^3-1/2 x^2-10x-1
|
critical\:f(x)=\frac{2}{3}x^{3}-\frac{1}{2}x^{2}-10x-1
|
critical f(x)=3x^{2/3}-2x,-1<= x<= 1
|
critical\:f(x)=3x^{\frac{2}{3}}-2x,-1\le\:x\le\:1
|
critical 5x^4+40x^3+75x^2
|
critical\:5x^{4}+40x^{3}+75x^{2}
|
critical f(x,y)=-x^2+y^2+2x-4y+7
|
critical\:f(x,y)=-x^{2}+y^{2}+2x-4y+7
|
critical x-cos(x)
|
critical\:x-\cos(x)
|
critical f(x,y)=x^3+3xy^2-3y^2-3x^2+11
|
critical\:f(x,y)=x^{3}+3xy^{2}-3y^{2}-3x^{2}+11
|
critical x^2-32sqrt(x)
|
critical\:x^{2}-32\sqrt{x}
|
critical f(x)=(x+5)e^{-x}
|
critical\:f(x)=(x+5)e^{-x}
|
critical f(x)=(sqrt(x))/(2-x)
|
critical\:f(x)=\frac{\sqrt{x}}{2-x}
|
critical f(x)=4x^3-48x^2+144x
|
critical\:f(x)=4x^{3}-48x^{2}+144x
|
inverse f(x)=(4x-9)/(x-4)
|
inverse\:f(x)=\frac{4x-9}{x-4}
|
critical f(x,y)=x^2-y^2*sqrt(1-x^2-y^2)
|
critical\:f(x,y)=x^{2}-y^{2}\cdot\:\sqrt{1-x^{2}-y^{2}}
|
critical f(x)=2x^{5/3}-5x^{4/3}
|
critical\:f(x)=2x^{\frac{5}{3}}-5x^{\frac{4}{3}}
|
critical f(x)=(x+5)/(x+1)
|
critical\:f(x)=\frac{x+5}{x+1}
|
critical xsqrt(9-x^2)
|
critical\:x\sqrt{9-x^{2}}
|
critical f(x)=x^3+6x^2-96x
|
critical\:f(x)=x^{3}+6x^{2}-96x
|