f(x)=(x^2-2x-8)/(x^2-16)
|
f(x)=\frac{x^{2}-2x-8}{x^{2}-16}
|
f(m)=8m^3+27
|
f(m)=8m^{3}+27
|
f(x)=6(x-5)
|
f(x)=6(x-5)
|
f(y)=log_{10}(y)
|
f(y)=\log_{10}(y)
|
f(x)=24x^3
|
f(x)=24x^{3}
|
y=x^2+4x+11
|
y=x^{2}+4x+11
|
f(x)=2(x+1)^2-3
|
f(x)=2(x+1)^{2}-3
|
f(x)=3x^2+5x-10
|
f(x)=3x^{2}+5x-10
|
f(y)=-2y
|
f(y)=-2y
|
f(y)=-3y
|
f(y)=-3y
|
domain of f(x)=x^3-9
|
domain\:f(x)=x^{3}-9
|
f(n)=2^{log_{10}(n)}
|
f(n)=2^{\log_{10}(n)}
|
y=-x^2+16x-57
|
y=-x^{2}+16x-57
|
f(x)=(2/3 x^2+4/5 x-2/3)^2
|
f(x)=(\frac{2}{3}x^{2}+\frac{4}{5}x-\frac{2}{3})^{2}
|
f(x)=4x^2+7
|
f(x)=4x^{2}+7
|
f(x)=(x+5)/2
|
f(x)=\frac{x+5}{2}
|
f(x)=sinh(x)+cosh(x)
|
f(x)=\sinh(x)+\cosh(x)
|
f(x)=sqrt(x-4)+sqrt(x+4)
|
f(x)=\sqrt{x-4}+\sqrt{x+4}
|
f(x)= 1/2 x+1/2
|
f(x)=\frac{1}{2}x+\frac{1}{2}
|
f(x)=6-3x
|
f(x)=6-3x
|
f(x)=sqrt(x+1)-1
|
f(x)=\sqrt{x+1}-1
|
extreme points of f(x)=-x^3+3x^2-6x+6
|
extreme\:points\:f(x)=-x^{3}+3x^{2}-6x+6
|
f(x)=log_{2}(x)+1
|
f(x)=\log_{2}(x)+1
|
f(x)=6cos^2(x)+5cos(x)-6
|
f(x)=6\cos^{2}(x)+5\cos(x)-6
|
f(x)=5x^2-x
|
f(x)=5x^{2}-x
|
f(x)=log_{2}(x+6)
|
f(x)=\log_{2}(x+6)
|
y=(x-1)(x-5)
|
y=(x-1)(x-5)
|
y=ln(sec(x)),0<= x<= pi/4
|
y=\ln(\sec(x)),0\le\:x\le\:\frac{π}{4}
|
f(x)=2-log_{10}(1-2x)
|
f(x)=2-\log_{10}(1-2x)
|
f(y)= 1/(e^y)
|
f(y)=\frac{1}{e^{y}}
|
f(x)=8x^2-800
|
f(x)=8x^{2}-800
|
f(-5)=x^2-1
|
f(-5)=x^{2}-1
|
inverse of f(x)= 1/2 \sqrt[3]{x-4}
|
inverse\:f(x)=\frac{1}{2}\sqrt[3]{x-4}
|
f(x)=(tan^2(x))/(sec(x)+1)
|
f(x)=\frac{\tan^{2}(x)}{\sec(x)+1}
|
f(x)=4^x+5+5
|
f(x)=4^{x}+5+5
|
h(t)=-16t^2+80t
|
h(t)=-16t^{2}+80t
|
f(x)=arccsc(1/x-x)
|
f(x)=\arccsc(\frac{1}{x}-x)
|
y= x/(sqrt(x^2-1))
|
y=\frac{x}{\sqrt{x^{2}-1}}
|
f(a)=sec(a)
|
f(a)=\sec(a)
|
f(x)=1000^{log_{10}(x)}
|
f(x)=1000^{\log_{10}(x)}
|
y=sin(a)x
|
y=\sin(a)x
|
f(x)=2log_{5}(x)
|
f(x)=2\log_{5}(x)
|
f(x)=x^2*4
|
f(x)=x^{2}\cdot\:4
|
intercepts of 1/(x^2+1)
|
intercepts\:\frac{1}{x^{2}+1}
|
f(x)=(x+2)/(x^2+4)
|
f(x)=\frac{x+2}{x^{2}+4}
|
f(x)=8x^2+16x+3
|
f(x)=8x^{2}+16x+3
|
y=e^{x/2}
|
y=e^{\frac{x}{2}}
|
f(x)=ln(e^x+e^{-x})
|
f(x)=\ln(e^{x}+e^{-x})
|
f(x)=|x-1|-3
|
f(x)=\left|x-1\right|-3
|
y=(3x-1)/2
|
y=\frac{3x-1}{2}
|
f(x)=x^2+8x-9
|
f(x)=x^{2}+8x-9
|
f(x)=x^2+10x+100
|
f(x)=x^{2}+10x+100
|
f(x)=sin(1/2 x)
|
f(x)=\sin(\frac{1}{2}x)
|
f(θ)=tan(θ)-1
|
f(θ)=\tan(θ)-1
|
midpoint (6,4)(0,2)
|
midpoint\:(6,4)(0,2)
|
f(x)=sqrt(5+2x)
|
f(x)=\sqrt{5+2x}
|
y=2-5x
|
y=2-5x
|
f(x)= 3/2 x-4
|
f(x)=\frac{3}{2}x-4
|
f(x)= 1/(e^{-x)+1}
|
f(x)=\frac{1}{e^{-x}+1}
|
f(x)=(5x-10)/(x^2-4)
|
f(x)=\frac{5x-10}{x^{2}-4}
|
y=-x^2-4x-5
|
y=-x^{2}-4x-5
|
f(x)=x^2+8x-16
|
f(x)=x^{2}+8x-16
|
f(x)=-8x+8
|
f(x)=-8x+8
|
f(x)=x^5-5x^4+8
|
f(x)=x^{5}-5x^{4}+8
|
f(x)=((x-1)^2)/(x^2+1)
|
f(x)=\frac{(x-1)^{2}}{x^{2}+1}
|
extreme points of f(x)=3x^2-18x+25
|
extreme\:points\:f(x)=3x^{2}-18x+25
|
y=(x^3)/(x^2+1)
|
y=\frac{x^{3}}{x^{2}+1}
|
f(x)=-(x+4)^2
|
f(x)=-(x+4)^{2}
|
y=3x^2+6x+5
|
y=3x^{2}+6x+5
|
g(x)=3x-2
|
g(x)=3x-2
|
f(x)=((4x-3)^2(x^2+5)^4)/((3x^2-2)^2)
|
f(x)=\frac{(4x-3)^{2}(x^{2}+5)^{4}}{(3x^{2}-2)^{2}}
|
f(x)=8x^2-1
|
f(x)=8x^{2}-1
|
y=cos(3pix)
|
y=\cos(3πx)
|
f(x)=cos(x)(sin(x))
|
f(x)=\cos(x)(\sin(x))
|
f(x)=sqrt(x)+7
|
f(x)=\sqrt{x}+7
|
y=1x+2
|
y=1x+2
|
perpendicular x+y=-1
|
perpendicular\:x+y=-1
|
line (-3,-2)(2,4)
|
line\:(-3,-2)(2,4)
|
asymptotes of f(x)=(8x)/(x^2-25)
|
asymptotes\:f(x)=\frac{8x}{x^{2}-25}
|
f(x)=(x+1)/(x^2+2x-3)
|
f(x)=\frac{x+1}{x^{2}+2x-3}
|
y=4x^2-8x-5
|
y=4x^{2}-8x-5
|
f(x)=(x+2)^3(x-4)^5
|
f(x)=(x+2)^{3}(x-4)^{5}
|
g(x)=5x+3
|
g(x)=5x+3
|
f(x)=x^3-6x+1
|
f(x)=x^{3}-6x+1
|
y=(-1)/(2x+4)
|
y=\frac{-1}{2x+4}
|
y=(-1)/(2x+5)
|
y=\frac{-1}{2x+5}
|
f(x)=2sin(7x)cos(x)-sin(6x)
|
f(x)=2\sin(7x)\cos(x)-\sin(6x)
|
f(x)=x^7+x-3
|
f(x)=x^{7}+x-3
|
f(x)=-(x-5)^2
|
f(x)=-(x-5)^{2}
|
intercepts of f(x)= x/(\sqrt[3]{x^2-4)}
|
intercepts\:f(x)=\frac{x}{\sqrt[3]{x^{2}-4}}
|
f(x)=9x^2+7x-56
|
f(x)=9x^{2}+7x-56
|
y=(x-2)^3
|
y=(x-2)^{3}
|
y=3x-14
|
y=3x-14
|
f(x)=(2x-3)/(x+1)
|
f(x)=\frac{2x-3}{x+1}
|
f(x)=x^2+6x-36
|
f(x)=x^{2}+6x-36
|
f(x)= x/2+1
|
f(x)=\frac{x}{2}+1
|
y=e^xln(x)
|
y=e^{x}\ln(x)
|
f(x)=-2x^2+4x-6
|
f(x)=-2x^{2}+4x-6
|
y=8x-2x^2
|
y=8x-2x^{2}
|
y=(2x+4)/(x-1)
|
y=\frac{2x+4}{x-1}
|