critical sqrt(x+1)
|
critical\:\sqrt{x+1}
|
critical x^4+4x^3-2x^2-12x
|
critical\:x^{4}+4x^{3}-2x^{2}-12x
|
critical f(x)=cos(x)-(sqrt(2))/2 x
|
critical\:f(x)=\cos(x)-\frac{\sqrt{2}}{2}x
|
critical f(x)=x^2-5x+3
|
critical\:f(x)=x^{2}-5x+3
|
f(x)=In(x+1)
|
f(x)=In(x+1)
|
critical y=6x^2-x^3
|
critical\:y=6x^{2}-x^{3}
|
range-3x+7
|
range\:-3x+7
|
critical x^x
|
critical\:x^{x}
|
critical f(x,y)=4xy+x^4+y^4
|
critical\:f(x,y)=4xy+x^{4}+y^{4}
|
critical f(x,y)=xy+y
|
critical\:f(x,y)=xy+y
|
critical x^4+4x^3-2
|
critical\:x^{4}+4x^{3}-2
|
critical f(x)=2x^3-9x^2+12x+1
|
critical\:f(x)=2x^{3}-9x^{2}+12x+1
|
critical f(x)=x^3-12x^2+36x
|
critical\:f(x)=x^{3}-12x^{2}+36x
|
critical f(x,y)=-2x^2-y^2+8x+10y-5xy
|
critical\:f(x,y)=-2x^{2}-y^{2}+8x+10y-5xy
|
critical (x^2)/(sqrt(x+1))
|
critical\:\frac{x^{2}}{\sqrt{x+1}}
|
critical f(x)=x^2e^{4-x}
|
critical\:f(x)=x^{2}e^{4-x}
|
critical f(x)=xe^{-6x}
|
critical\:f(x)=xe^{-6x}
|
inverse \sqrt[3]{x+1}-2
|
inverse\:\sqrt[3]{x+1}-2
|
critical f(x)=5x^2ln(x)
|
critical\:f(x)=5x^{2}\ln(x)
|
critical y=x^3+1
|
critical\:y=x^{3}+1
|
f(x,y)=x^3+3xy^2-3y^2-7
|
f(x,y)=x^{3}+3xy^{2}-3y^{2}-7
|
critical f(x)=5-2x+x^2
|
critical\:f(x)=5-2x+x^{2}
|
critical f(x)=t^{3/4}-3t^{1/4}
|
critical\:f(x)=t^{\frac{3}{4}}-3t^{\frac{1}{4}}
|
critical f(x)= 1/3 x^3-5/2 x^2+4x
|
critical\:f(x)=\frac{1}{3}x^{3}-\frac{5}{2}x^{2}+4x
|
critical y=x^3+3x^2+b
|
critical\:y=x^{3}+3x^{2}+b
|
critical f(x)=(x^4}{12}-\frac{x^2)/2+2/3 x-1
|
critical\:f(x)=\frac{x^{4}}{12}-\frac{x^{2}}{2}+\frac{2}{3}x-1
|
critical f(x)=xe^{3x}
|
critical\:f(x)=xe^{3x}
|
critical f(x)=-x^3+2x^2+2
|
critical\:f(x)=-x^{3}+2x^{2}+2
|
intercepts f(x)=(3x^2+9x-12)/(x^2+13x+36)
|
intercepts\:f(x)=\frac{3x^{2}+9x-12}{x^{2}+13x+36}
|
critical f(x)=2x^3-3x^2-12x+7
|
critical\:f(x)=2x^{3}-3x^{2}-12x+7
|
critical f(x)=cos(x)+(sqrt(2))/2 x
|
critical\:f(x)=\cos(x)+\frac{\sqrt{2}}{2}x
|
critical f(x,y)=x^2-y^2
|
critical\:f(x,y)=x^{2}-y^{2}
|
critical f(x)=2x^3+3x^2-12x+1
|
critical\:f(x)=2x^{3}+3x^{2}-12x+1
|
critical f(x)=x^2e^{3x}
|
critical\:f(x)=x^{2}e^{3x}
|
critical 2cos(x)-sin(2x)
|
critical\:2\cos(x)-\sin(2x)
|
critical f(x,y)=x-x^3+y^3-y
|
critical\:f(x,y)=x-x^{3}+y^{3}-y
|
critical f(x)=-4x^3+3x^2+18x
|
critical\:f(x)=-4x^{3}+3x^{2}+18x
|
critical 3x^4+4x^3-12x^2+7
|
critical\:3x^{4}+4x^{3}-12x^{2}+7
|
critical x^3-3/2 x^2
|
critical\:x^{3}-\frac{3}{2}x^{2}
|
asymptotes (x^2+4x+3)/(x^2-1)
|
asymptotes\:\frac{x^{2}+4x+3}{x^{2}-1}
|
symmetry 3x^2+x^6
|
symmetry\:3x^{2}+x^{6}
|
critical f(x)=x^{1/5}-x^{-4/5}
|
critical\:f(x)=x^{\frac{1}{5}}-x^{-\frac{4}{5}}
|
critical f(x)=x^{4/5}(x-5)^2
|
critical\:f(x)=x^{\frac{4}{5}}(x-5)^{2}
|
critical f(x)=-1/(x^2)
|
critical\:f(x)=-\frac{1}{x^{2}}
|
critical f(x)=xy^2-2xy+3x^3-3x
|
critical\:f(x)=xy^{2}-2xy+3x^{3}-3x
|
critical x^2+4x+4
|
critical\:x^{2}+4x+4
|
critical f(x)= x/(sqrt(x^2-9))
|
critical\:f(x)=\frac{x}{\sqrt{x^{2}-9}}
|
critical f(x)=x^3+2xy-2x-4y
|
critical\:f(x)=x^{3}+2xy-2x-4y
|
f(x,y)=x^4+y^4+6x^2y^2+8x^3
|
f(x,y)=x^{4}+y^{4}+6x^{2}y^{2}+8x^{3}
|
critical x^4-4x^3+7
|
critical\:x^{4}-4x^{3}+7
|
critical (x^2-1)^3
|
critical\:(x^{2}-1)^{3}
|
asymptotes ((x+2)(x-1))/((x-3)^2)
|
asymptotes\:\frac{(x+2)(x-1)}{(x-3)^{2}}
|
critical f(x)=(5x)/(x-3)
|
critical\:f(x)=\frac{5x}{x-3}
|
critical f(x)= x/((x^2-9))
|
critical\:f(x)=\frac{x}{(x^{2}-9)}
|
critical f(x)=sqrt(x)ln(x)
|
critical\:f(x)=\sqrt{x}\ln(x)
|
critical f(x)=6x^3-9x^2-108x
|
critical\:f(x)=6x^{3}-9x^{2}-108x
|
critical f(x)=x^2sqrt(x+5)
|
critical\:f(x)=x^{2}\sqrt{x+5}
|
critical f(x,y)=e^y(y^2-x^2)
|
critical\:f(x,y)=e^{y}(y^{2}-x^{2})
|
critical f(x)=e^{3x}(36x^2+4)
|
critical\:f(x)=e^{3x}(36x^{2}+4)
|
critical f(x)=x^3-12x-4
|
critical\:f(x)=x^{3}-12x-4
|
critical f(x)=x^2+3x+2
|
critical\:f(x)=x^{2}+3x+2
|
critical f(x)=x^3-6x^2+12x
|
critical\:f(x)=x^{3}-6x^{2}+12x
|
domain f(x)=sqrt(x+5)-(sqrt(7-x))/x
|
domain\:f(x)=\sqrt{x+5}-\frac{\sqrt{7-x}}{x}
|
critical xsqrt(1-x^2)
|
critical\:x\sqrt{1-x^{2}}
|
critical f(x)=x*e^{-x}
|
critical\:f(x)=x\cdot\:e^{-x}
|
critical f(x)=x^3-3x^2-9x+4
|
critical\:f(x)=x^{3}-3x^{2}-9x+4
|
critical f(x,y)=(1+xy)(x+y)
|
critical\:f(x,y)=(1+xy)(x+y)
|
critical f(x)=x^2e^{-x^2}
|
critical\:f(x)=x^{2}e^{-x^{2}}
|
critical f(x)= 2/3 x^3-x^2-12x+3
|
critical\:f(x)=\frac{2}{3}x^{3}-x^{2}-12x+3
|
critical f(x)=-x^5+x^4+5x+3
|
critical\:f(x)=-x^{5}+x^{4}+5x+3
|
critical f(x)=((x-1)^2)/(x^2+1)
|
critical\:f(x)=\frac{(x-1)^{2}}{x^{2}+1}
|
critical f(x)=2x^2-3x^2-36x+5
|
critical\:f(x)=2x^{2}-3x^{2}-36x+5
|
critical f(x)=e^{x^2}
|
critical\:f(x)=e^{x^{2}}
|
domain f(x)=e^{2x}-2
|
domain\:f(x)=e^{2x}-2
|
critical f(x)=(1+x)/(1-x)
|
critical\:f(x)=\frac{1+x}{1-x}
|
critical f(x)=\sqrt[3]{x^2}(x-2)^2
|
critical\:f(x)=\sqrt[3]{x^{2}}(x-2)^{2}
|
critical f(x)=4x^3-9x^2-12x+3
|
critical\:f(x)=4x^{3}-9x^{2}-12x+3
|
critical f(x,y)=x^3-y^3+6xy
|
critical\:f(x,y)=x^{3}-y^{3}+6xy
|
critical f(x,y)=5+3x^2+3y^2+2y^3+x^3
|
critical\:f(x,y)=5+3x^{2}+3y^{2}+2y^{3}+x^{3}
|
critical f(x)=10x^6+24x^5+15x^4+3
|
critical\:f(x)=10x^{6}+24x^{5}+15x^{4}+3
|
critical f(x)=3x^5-20x^3
|
critical\:f(x)=3x^{5}-20x^{3}
|
critical-x^3+3x^2-1
|
critical\:-x^{3}+3x^{2}-1
|
critical f(x)= 1/2 ln((1+x)/(1-x))-2x
|
critical\:f(x)=\frac{1}{2}\ln(\frac{1+x}{1-x})-2x
|
critical f(x)=cos(x)-1/2 x
|
critical\:f(x)=\cos(x)-\frac{1}{2}x
|
critical points f(x)=49x^3-3x
|
critical\:points\:f(x)=49x^{3}-3x
|
critical f(x)=2x^2+y^2+4x-4y+5
|
critical\:f(x)=2x^{2}+y^{2}+4x-4y+5
|
critical f(x)=x^8ln(x)
|
critical\:f(x)=x^{8}\ln(x)
|
critical f(x)=2x^6-3x^4
|
critical\:f(x)=2x^{6}-3x^{4}
|
critical x^5-5x
|
critical\:x^{5}-5x
|
critical f(x)=x^4-2x^3+1
|
critical\:f(x)=x^{4}-2x^{3}+1
|
critical f(x)= 1/3 x^3-x^2-3x+10
|
critical\:f(x)=\frac{1}{3}x^{3}-x^{2}-3x+10
|
critical (x^2+3)/(12x)
|
critical\:\frac{x^{2}+3}{12x}
|
critical f(x)=3x^4+12x^3-24x^2
|
critical\:f(x)=3x^{4}+12x^{3}-24x^{2}
|
critical f(x)=x^2-2ln(x)
|
critical\:f(x)=x^{2}-2\ln(x)
|
critical f(x)=x^6ln(x)
|
critical\:f(x)=x^{6}\ln(x)
|
extreme points f(x)=8x^2-8
|
extreme\:points\:f(x)=8x^{2}-8
|
critical f(x)=2
|
critical\:f(x)=2
|
critical f(x)=(x+2)e^{1-x}
|
critical\:f(x)=(x+2)e^{1-x}
|
critical f(x,y)=-x^3+4xy-2y^2+1
|
critical\:f(x,y)=-x^{3}+4xy-2y^{2}+1
|
critical xye^{-x^2-y^2}
|
critical\:xye^{-x^{2}-y^{2}}
|