critical x^2-x-20
|
critical\:x^{2}-x-20
|
critical s^3
|
critical\:s^{3}
|
critical f(x)=x^3+3x-2
|
critical\:f(x)=x^{3}+3x-2
|
critical f(x)=x^3-2x^2+x
|
critical\:f(x)=x^{3}-2x^{2}+x
|
critical f(x)=(4-x^2)^5
|
critical\:f(x)=(4-x^{2})^{5}
|
critical f(x)= x/((1-x)^2)
|
critical\:f(x)=\frac{x}{(1-x)^{2}}
|
distance (-5,-2)(-8,3)
|
distance\:(-5,-2)(-8,3)
|
f(x,y)=2x^3+y^4
|
f(x,y)=2x^{3}+y^{4}
|
critical f(x,y)=x^2+4y^2-6x+16y
|
critical\:f(x,y)=x^{2}+4y^{2}-6x+16y
|
critical (-x^2+1)/((x^2+1)^2)
|
critical\:\frac{-x^{2}+1}{(x^{2}+1)^{2}}
|
critical f(x)=x^2+4xy+y^2+y^3
|
critical\:f(x)=x^{2}+4xy+y^{2}+y^{3}
|
critical f(x)=x^3+2x^2+x-7
|
critical\:f(x)=x^{3}+2x^{2}+x-7
|
critical f(x)=3x^4+8x^3-18x^2
|
critical\:f(x)=3x^{4}+8x^{3}-18x^{2}
|
critical f(x)=x^4-18x^2+81
|
critical\:f(x)=x^{4}-18x^{2}+81
|
critical f(x)=(5-x)(x+1)^2
|
critical\:f(x)=(5-x)(x+1)^{2}
|
critical f(x)=(x^3-1)^{2/3}
|
critical\:f(x)=(x^{3}-1)^{\frac{2}{3}}
|
critical f(x)= 1/4 x^2-2x
|
critical\:f(x)=\frac{1}{4}x^{2}-2x
|
extreme points f(x)=ln(2-3x^2)
|
extreme\:points\:f(x)=\ln(2-3x^{2})
|
critical f(x)=x^4+8x^3+18x^2-8
|
critical\:f(x)=x^{4}+8x^{3}+18x^{2}-8
|
critical f(x)=-(x-2)^3
|
critical\:f(x)=-(x-2)^{3}
|
critical f(x,y)=xy^2+2xy
|
critical\:f(x,y)=xy^{2}+2xy
|
critical f(x)=xsqrt(x^2+25)
|
critical\:f(x)=x\sqrt{x^{2}+25}
|
critical f(x,y)=yxe^{-(x^2+y^2)}
|
critical\:f(x,y)=yxe^{-(x^{2}+y^{2})}
|
critical f(x)=(e^{2x})/(x+2)
|
critical\:f(x)=\frac{e^{2x}}{x+2}
|
critical f(x,y)=(5-x)(5-y)(x+y-5)
|
critical\:f(x,y)=(5-x)(5-y)(x+y-5)
|
critical f(x)=x^4+4x^3
|
critical\:f(x)=x^{4}+4x^{3}
|
critical x^3-12x
|
critical\:x^{3}-12x
|
critical 4xy-x^4-y^4
|
critical\:4xy-x^{4}-y^{4}
|
asymptotes (9-3x)/(x-5)
|
asymptotes\:\frac{9-3x}{x-5}
|
inverse f(x)=-2x^2-1
|
inverse\:f(x)=-2x^{2}-1
|
critical x^2-4x
|
critical\:x^{2}-4x
|
critical f(x)=\sqrt[3]{81-x^2}
|
critical\:f(x)=\sqrt[3]{81-x^{2}}
|
critical f(x)=cos(x)+sqrt(3)sin(x)
|
critical\:f(x)=\cos(x)+\sqrt{3}\sin(x)
|
critical f(x)=3x^2-12
|
critical\:f(x)=3x^{2}-12
|
critical f(x)=xln(3x)
|
critical\:f(x)=x\ln(3x)
|
critical f(x)=3x^2-3x
|
critical\:f(x)=3x^{2}-3x
|
critical g(t)=t^4+t^3+t^2+1
|
critical\:g(t)=t^{4}+t^{3}+t^{2}+1
|
critical f(x)=(x^5-5x)/5
|
critical\:f(x)=\frac{x^{5}-5x}{5}
|
critical f(x)=6x^2-2x^3+3y^2+6xy
|
critical\:f(x)=6x^{2}-2x^{3}+3y^{2}+6xy
|
critical tanh(x)
|
critical\:\tanh(x)
|
distance (-5,3)(10,0)
|
distance\:(-5,3)(10,0)
|
critical ln(x^2+1)
|
critical\:\ln(x^{2}+1)
|
critical 1/(x^2-9)
|
critical\:\frac{1}{x^{2}-9}
|
critical 3sin(x)
|
critical\:3\sin(x)
|
critical f(x)= 1/(x^2-9)
|
critical\:f(x)=\frac{1}{x^{2}-9}
|
critical y=x^2e^x
|
critical\:y=x^{2}e^{x}
|
critical f(x)=e^x(8-x^2)
|
critical\:f(x)=e^{x}(8-x^{2})
|
critical f(x)=x^3+x
|
critical\:f(x)=x^{3}+x
|
critical f(x)=x^4-8x^2+5
|
critical\:f(x)=x^{4}-8x^{2}+5
|
critical f(x)=(x-2)^2(x-1)
|
critical\:f(x)=(x-2)^{2}(x-1)
|
critical 1/(x^3-x)
|
critical\:\frac{1}{x^{3}-x}
|
domain log_{2}(2-x)
|
domain\:\log_{2}(2-x)
|
critical e^{2x-6}-e
|
critical\:e^{2x-6}-e
|
critical x^3+x^2-8x+5
|
critical\:x^{3}+x^{2}-8x+5
|
critical f(x,y)=xy+ln(x)+32y^2
|
critical\:f(x,y)=xy+\ln(x)+32y^{2}
|
critical f(x)=x^{2/3}(x-4)^2
|
critical\:f(x)=x^{\frac{2}{3}}(x-4)^{2}
|
critical f(x)=(x-3)^{1/3}
|
critical\:f(x)=(x-3)^{\frac{1}{3}}
|
critical f(x)=4x^4-16x^2+17
|
critical\:f(x)=4x^{4}-16x^{2}+17
|
critical f(x)=5x^3-3x^5
|
critical\:f(x)=5x^{3}-3x^{5}
|
critical x/(x^2+11x+30)
|
critical\:\frac{x}{x^{2}+11x+30}
|
critical f(x)=(8-6x)e^x
|
critical\:f(x)=(8-6x)e^{x}
|
critical f(x)=3x^2-18x+15
|
critical\:f(x)=3x^{2}-18x+15
|
domain 8/(\frac{7){x-4}}
|
domain\:\frac{8}{\frac{7}{x-4}}
|
critical f(x)=12cos(x)+6sin^2(x)
|
critical\:f(x)=12\cos(x)+6\sin^{2}(x)
|
critical 1/4 x^4-1/3 x^3-x^2
|
critical\:\frac{1}{4}x^{4}-\frac{1}{3}x^{3}-x^{2}
|
critical f(x)=-2+4x^2-2x^4
|
critical\:f(x)=-2+4x^{2}-2x^{4}
|
critical x^4+x^3-6x^2
|
critical\:x^{4}+x^{3}-6x^{2}
|
critical f(x)=2cos(x)
|
critical\:f(x)=2\cos(x)
|
critical f(x)=x^3ln(x)
|
critical\:f(x)=x^{3}\ln(x)
|
critical f(x,y)=2x^2+y^4-4xy
|
critical\:f(x,y)=2x^{2}+y^{4}-4xy
|
critical x^3-6x^2
|
critical\:x^{3}-6x^{2}
|
critical f(x,y)=x^2y+xy^2+3xy
|
critical\:f(x,y)=x^{2}y+xy^{2}+3xy
|
critical f(x,y)=x^2-4xy+2y^2+4x+8y+7
|
critical\:f(x,y)=x^{2}-4xy+2y^{2}+4x+8y+7
|
intercepts 2^{x+3}
|
intercepts\:2^{x+3}
|
critical-1/((x-1)^2)
|
critical\:-\frac{1}{(x-1)^{2}}
|
critical x/(x^2-x+9)
|
critical\:\frac{x}{x^{2}-x+9}
|
critical f(x,y)=x^3+y^3-3x^2-3y^2-9x
|
critical\:f(x,y)=x^{3}+y^{3}-3x^{2}-3y^{2}-9x
|
critical f(x)=6x^3-18x+10
|
critical\:f(x)=6x^{3}-18x+10
|
critical f(x,y)=x^2+2y^2-x^2y+12y
|
critical\:f(x,y)=x^{2}+2y^{2}-x^{2}y+12y
|
critical f(x)=2x^2ln(x)
|
critical\:f(x)=2x^{2}\ln(x)
|
critical f(x)=x^3-3x+10
|
critical\:f(x)=x^{3}-3x+10
|
critical y=(x-1)/(x^2-x+1)
|
critical\:y=\frac{x-1}{x^{2}-x+1}
|
critical 6x^2-6x-12
|
critical\:6x^{2}-6x-12
|
critical 2x+1
|
critical\:2x+1
|
asymptotes f(x)=(x+9)/(x^2+2x)
|
asymptotes\:f(x)=\frac{x+9}{x^{2}+2x}
|
critical f(x,y)=2x^4+y^4-4x^2-2y^2
|
critical\:f(x,y)=2x^{4}+y^{4}-4x^{2}-2y^{2}
|
critical xsqrt(6-x)
|
critical\:x\sqrt{6-x}
|
critical f(x,y)=2x^2+3y^2-4x-12y+3
|
critical\:f(x,y)=2x^{2}+3y^{2}-4x-12y+3
|
critical f(x)=cos^2(x)
|
critical\:f(x)=\cos^{2}(x)
|
critical f(x)=x^4-x^2
|
critical\:f(x)=x^{4}-x^{2}
|
critical (x+1)^{2/3}(x-3)^2
|
critical\:(x+1)^{\frac{2}{3}}(x-3)^{2}
|
critical f(x)=3x^2-12x
|
critical\:f(x)=3x^{2}-12x
|
critical f(x)=x-sin(2x)
|
critical\:f(x)=x-\sin(2x)
|
critical f(x)= 1/(x-1)
|
critical\:f(x)=\frac{1}{x-1}
|
critical |x^2+6x|
|
critical\:\left|x^{2}+6x\right|
|
domain (-8x-81)/(9x+55)
|
domain\:\frac{-8x-81}{9x+55}
|
critical f(x)=x^5-8x^4+16x^3-10
|
critical\:f(x)=x^{5}-8x^{4}+16x^{3}-10
|
critical f(x)=2x^2-4x+2
|
critical\:f(x)=2x^{2}-4x+2
|
critical f(x)=x^3-6x
|
critical\:f(x)=x^{3}-6x
|
critical f(x)=-(x-2)^3+2
|
critical\:f(x)=-(x-2)^{3}+2
|