y=log_{x}(x+3)
|
y=\log_{x}(x+3)
|
f(x)=(|x-2|)/(x^2+1)
|
f(x)=\frac{\left|x-2\right|}{x^{2}+1}
|
domain of f(x)=(sqrt(x)+2)/(x^6-64)
|
domain\:f(x)=\frac{\sqrt{x}+2}{x^{6}-64}
|
f(x)=e^{2ln(x)}
|
f(x)=e^{2\ln(x)}
|
f(x)=(ln(x))^5
|
f(x)=(\ln(x))^{5}
|
f(x)=x^2+3x-18
|
f(x)=x^{2}+3x-18
|
y= 3/7 x-1/9
|
y=\frac{3}{7}x-\frac{1}{9}
|
y=Cx^2
|
y=Cx^{2}
|
f(x)=e^{ln(x)}
|
f(x)=e^{\ln(x)}
|
y=x^2-x^3
|
y=x^{2}-x^{3}
|
f(x)=cosh(x)+sinh(x)
|
f(x)=\cosh(x)+\sinh(x)
|
f(x)=sqrt(x-1)+1
|
f(x)=\sqrt{x-1}+1
|
f(x)=x^2-12x
|
f(x)=x^{2}-12x
|
distance (3/2 , 4/3)(3,-2)
|
distance\:(\frac{3}{2},\frac{4}{3})(3,-2)
|
f(x)=x^2+14x+50
|
f(x)=x^{2}+14x+50
|
f(y)=(ln(y))^2
|
f(y)=(\ln(y))^{2}
|
f(x)=(x^2-1)/(x^3)
|
f(x)=\frac{x^{2}-1}{x^{3}}
|
f(y)=\sqrt[5]{y}
|
f(y)=\sqrt[5]{y}
|
f(x)= 1/(2cos(x))
|
f(x)=\frac{1}{2\cos(x)}
|
y=sqrt(x+2)-3
|
y=\sqrt{x+2}-3
|
f(x)=e^{x+4}-3
|
f(x)=e^{x+4}-3
|
f(x)=(x^2-1)/(x+2)
|
f(x)=\frac{x^{2}-1}{x+2}
|
r(θ)= 2/(2-cos(θ))
|
r(θ)=\frac{2}{2-\cos(θ)}
|
f(x)=e^x-5
|
f(x)=e^{x}-5
|
intercepts of f(x)=x^2+1
|
intercepts\:f(x)=x^{2}+1
|
f(x)=x^5-5x^4
|
f(x)=x^{5}-5x^{4}
|
y=x^3-3x^2+4
|
y=x^{3}-3x^{2}+4
|
f(z)=4z
|
f(z)=4z
|
f(x)=\sqrt[3]{1-x^3}
|
f(x)=\sqrt[3]{1-x^{3}}
|
f(t)=e^t-e^{-t}
|
f(t)=e^{t}-e^{-t}
|
f(x)=3x^2-12x+16
|
f(x)=3x^{2}-12x+16
|
y=(x+1)^2-3
|
y=(x+1)^{2}-3
|
f(x)=(x+5)/(x-5)
|
f(x)=\frac{x+5}{x-5}
|
f(x)=(x+5)/(x-3)
|
f(x)=\frac{x+5}{x-3}
|
f(x)=\sqrt[4]{3/(2x)}
|
f(x)=\sqrt[4]{\frac{3}{2x}}
|
amplitude of f(x)=5sin(x)
|
amplitude\:f(x)=5\sin(x)
|
line (8,4),(4,2)
|
line\:(8,4),(4,2)
|
f(x)=-x^2+8x-11
|
f(x)=-x^{2}+8x-11
|
f(s)=s^2-4s+5
|
f(s)=s^{2}-4s+5
|
f(x)=3x^3-1
|
f(x)=3x^{3}-1
|
f(x)=-3x^4+8x^3-6x^2-2
|
f(x)=-3x^{4}+8x^{3}-6x^{2}-2
|
f(x)=(2x^2+x+3)/(2x^2+3x+1)
|
f(x)=\frac{2x^{2}+x+3}{2x^{2}+3x+1}
|
f(x)=(x+2)(x-2)
|
f(x)=(x+2)(x-2)
|
f(x)=cos^2(x)-sin^2(x)
|
f(x)=\cos^{2}(x)-\sin^{2}(x)
|
f(x)=(x+5)/x
|
f(x)=\frac{x+5}{x}
|
y=3x^2-6x+1
|
y=3x^{2}-6x+1
|
f(t)=3sin(t),0<t<pi
|
f(t)=3\sin(t),0<t<π
|
line (0,4)(7,8)
|
line\:(0,4)(7,8)
|
f(x)=-log_{10}(x+2)
|
f(x)=-\log_{10}(x+2)
|
f(x)=6-2x
|
f(x)=6-2x
|
y=-4cos(2x)
|
y=-4\cos(2x)
|
g(x)=ln(x+2)
|
g(x)=\ln(x+2)
|
y= 1/3*3^x
|
y=\frac{1}{3}\cdot\:3^{x}
|
f(n)=n^2-7n+12
|
f(n)=n^{2}-7n+12
|
y=x(x-1)(x-2)
|
y=x(x-1)(x-2)
|
f(n)=3n-1
|
f(n)=3n-1
|
f(s)= 1/(s^2+s+1)
|
f(s)=\frac{1}{s^{2}+s+1}
|
f(x)=(cos(5x))^2
|
f(x)=(\cos(5x))^{2}
|
midpoint (-5,4)(1,-3)
|
midpoint\:(-5,4)(1,-3)
|
f(x)=x^3+cos(x)
|
f(x)=x^{3}+\cos(x)
|
f(x)=2x+cos(2x)
|
f(x)=2x+\cos(2x)
|
y=x^2-8x-20
|
y=x^{2}-8x-20
|
y= x/(e^x)
|
y=\frac{x}{e^{x}}
|
f(x)=-4x-2
|
f(x)=-4x-2
|
y=-2x+13
|
y=-2x+13
|
f(x)=-x/3
|
f(x)=-\frac{x}{3}
|
y=-x^2-3x+6
|
y=-x^{2}-3x+6
|
g(x)= 2/(x-1)
|
g(x)=\frac{2}{x-1}
|
f(x)=4x-20
|
f(x)=4x-20
|
inverse of f(x)=log_{3}(4^x-4)
|
inverse\:f(x)=\log_{3}(4^{x}-4)
|
f(x)=x^4+4x
|
f(x)=x^{4}+4x
|
f(x)=x^2*5
|
f(x)=x^{2}\cdot\:5
|
f(x)= 1/(x^2-16)
|
f(x)=\frac{1}{x^{2}-16}
|
f(x)=x-sin(2x)
|
f(x)=x-\sin(2x)
|
f(x)=-6x-7
|
f(x)=-6x-7
|
f(x)=|5x-2|
|
f(x)=\left|5x-2\right|
|
f(x)=sqrt(x+5)-3
|
f(x)=\sqrt{x+5}-3
|
f(x)=-7x+5
|
f(x)=-7x+5
|
f(x)=sqrt(x)+x^2
|
f(x)=\sqrt{x}+x^{2}
|
f(x)=2x^2+2x-12
|
f(x)=2x^{2}+2x-12
|
extreme points of 3x^4-28x^3+60x^2
|
extreme\:points\:3x^{4}-28x^{3}+60x^{2}
|
f(x)=x^3-13x^2+47x-35
|
f(x)=x^{3}-13x^{2}+47x-35
|
f(x)=7x^2-5
|
f(x)=7x^{2}-5
|
f(x)=2sin(x)+sin^2(x)
|
f(x)=2\sin(x)+\sin^{2}(x)
|
f(x)=\sqrt[3]{x-7}
|
f(x)=\sqrt[3]{x-7}
|
y=-x^2-4x-2
|
y=-x^{2}-4x-2
|
y=|x-2|+3
|
y=\left|x-2\right|+3
|
y=arctan(2x)
|
y=\arctan(2x)
|
f(x)=(2x^2+18x+40)/(3x^2+10x-25)
|
f(x)=\frac{2x^{2}+18x+40}{3x^{2}+10x-25}
|
f(x)=(2(-2)^2)/(2(-2)+2)
|
f(x)=\frac{2(-2)^{2}}{2(-2)+2}
|
y=2x+0
|
y=2x+0
|
inverse of f(x)=((4x+2))/3
|
inverse\:f(x)=\frac{(4x+2)}{3}
|
y=-2x^2+8x-3
|
y=-2x^{2}+8x-3
|
y=arcsin(4x)
|
y=\arcsin(4x)
|
f(x)=sin((pix)/4)
|
f(x)=\sin(\frac{πx}{4})
|
y=1x+1
|
y=1x+1
|
f(m)=15m^2-8m-12
|
f(m)=15m^{2}-8m-12
|
f(x)=x^2+9x-2
|
f(x)=x^{2}+9x-2
|
f(x)=x^2+10x+19
|
f(x)=x^{2}+10x+19
|
y=2(x-2)^2+4
|
y=2(x-2)^{2}+4
|