critical xy
|
critical\:xy
|
critical f(x)=(x^4+1)/(x^2)
|
critical\:f(x)=\frac{x^{4}+1}{x^{2}}
|
critical g(θ)=4θ-tan(θ)
|
critical\:g(θ)=4θ-\tan(θ)
|
critical f(x)=(x^2-1)^2
|
critical\:f(x)=(x^{2}-1)^{2}
|
critical f(x)=cos^2(x)+sin(x)
|
critical\:f(x)=\cos^{2}(x)+\sin(x)
|
critical x^4-2x^2+3
|
critical\:x^{4}-2x^{2}+3
|
domain (x+3)/(x^2+4x-5)
|
domain\:\frac{x+3}{x^{2}+4x-5}
|
midpoint (-3,-5)(1,-3)
|
midpoint\:(-3,-5)(1,-3)
|
critical f(x)= x/(x^2-x+1)
|
critical\:f(x)=\frac{x}{x^{2}-x+1}
|
critical y= 1/3 x^3+1/2 x^2-6x+8
|
critical\:y=\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-6x+8
|
critical f(x)=20x^3-3x^5
|
critical\:f(x)=20x^{3}-3x^{5}
|
critical f(x)=(x-1)/(x+1)
|
critical\:f(x)=\frac{x-1}{x+1}
|
critical f(x)=(x-1)^3
|
critical\:f(x)=(x-1)^{3}
|
critical f(x)= x/((x+1)^2)
|
critical\:f(x)=\frac{x}{(x+1)^{2}}
|
critical f(x)=x^2+8x+16
|
critical\:f(x)=x^{2}+8x+16
|
critical f(x)=3x-x^2-xy
|
critical\:f(x)=3x-x^{2}-xy
|
critical f(x)=x^3-12x+5
|
critical\:f(x)=x^{3}-12x+5
|
critical f(x,y)=4x^2+4y^2+x^4+y^4-6x^2y^2
|
critical\:f(x,y)=4x^{2}+4y^{2}+x^{4}+y^{4}-6x^{2}y^{2}
|
critical points f(x)= 1/((x^2-4))
|
critical\:points\:f(x)=\frac{1}{(x^{2}-4)}
|
critical f(x)=xy+5x-5
|
critical\:f(x)=xy+5x-5
|
critical f(x,y)=3y^2-2y^3-3x^2+6xy
|
critical\:f(x,y)=3y^{2}-2y^{3}-3x^{2}+6xy
|
f(x,y)=(x^2-y^2)(x^2+y^2)
|
f(x,y)=(x^{2}-y^{2})(x^{2}+y^{2})
|
critical x^2+4
|
critical\:x^{2}+4
|
critical f(x,y)=x^3+y^3+3x^2-3y^2-8
|
critical\:f(x,y)=x^{3}+y^{3}+3x^{2}-3y^{2}-8
|
critical f(x)=x^2-4x+1
|
critical\:f(x)=x^{2}-4x+1
|
critical f(x)=xsqrt(25-x^2)
|
critical\:f(x)=x\sqrt{25-x^{2}}
|
critical f(x)=3x^2ln(x)
|
critical\:f(x)=3x^{2}\ln(x)
|
critical f(x)=(x^2-4)^2
|
critical\:f(x)=(x^{2}-4)^{2}
|
critical 2x^3+6x^2-18x
|
critical\:2x^{3}+6x^{2}-18x
|
domain f(x)=(sqrt(x-1))/(x-3)
|
domain\:f(x)=\frac{\sqrt{x-1}}{x-3}
|
critical f(x)=(ln(x))/(x^3)
|
critical\:f(x)=\frac{\ln(x)}{x^{3}}
|
critical x^4-4x
|
critical\:x^{4}-4x
|
critical 2x^2-4x-1
|
critical\:2x^{2}-4x-1
|
critical f(x)=3sin(x)
|
critical\:f(x)=3\sin(x)
|
critical x+9/x
|
critical\:x+\frac{9}{x}
|
critical f(x)=x^6+2x^4
|
critical\:f(x)=x^{6}+2x^{4}
|
f(x,y)=2x^2+y^4-2x^2y^2+3
|
f(x,y)=2x^{2}+y^{4}-2x^{2}y^{2}+3
|
critical f(x)=2x+(18)/x
|
critical\:f(x)=2x+\frac{18}{x}
|
critical 2x^3-3xy+3y^3
|
critical\:2x^{3}-3xy+3y^{3}
|
critical y=x^3+(-3)x^2+b
|
critical\:y=x^{3}+(-3)x^{2}+b
|
asymptotes sec((2pi)/7 x)-2
|
asymptotes\:\sec(\frac{2\pi}{7}x)-2
|
critical x^2-2x+1
|
critical\:x^{2}-2x+1
|
critical (2x^2)/(1-x^2)
|
critical\:\frac{2x^{2}}{1-x^{2}}
|
critical (x^2+10)(9-x^2)
|
critical\:(x^{2}+10)(9-x^{2})
|
critical f(x,y)=x^2-x^2y+1/3 y^3
|
critical\:f(x,y)=x^{2}-x^{2}y+\frac{1}{3}y^{3}
|
critical f(x)=x^3-3x+4
|
critical\:f(x)=x^{3}-3x+4
|
critical f(x)= x/(x^3-1)
|
critical\:f(x)=\frac{x}{x^{3}-1}
|
critical f(x)=x^{2/3}-x/6
|
critical\:f(x)=x^{\frac{2}{3}}-\frac{x}{6}
|
critical f(x)=x^{-8}ln(x)
|
critical\:f(x)=x^{-8}\ln(x)
|
critical (x^2-6x+12)/(x-4)
|
critical\:\frac{x^{2}-6x+12}{x-4}
|
critical f(x)=x^3+4x
|
critical\:f(x)=x^{3}+4x
|
inverse f(x)=(81)/(x^2)
|
inverse\:f(x)=\frac{81}{x^{2}}
|
critical (x^2+12)(4-x^2)
|
critical\:(x^{2}+12)(4-x^{2})
|
critical f(x)=x^3-x^2-x+8
|
critical\:f(x)=x^{3}-x^{2}-x+8
|
critical e^{-0.5x^2}
|
critical\:e^{-0.5x^{2}}
|
critical f(x)=7x^2ln(x)
|
critical\:f(x)=7x^{2}\ln(x)
|
critical f(x)=4x^3-12x
|
critical\:f(x)=4x^{3}-12x
|
critical f(x)=(x^2)/(x-6)
|
critical\:f(x)=\frac{x^{2}}{x-6}
|
critical f(x)=|3t-4|
|
critical\:f(x)=\left|3t-4\right|
|
critical f(x)=x^2(x-2)^2
|
critical\:f(x)=x^{2}(x-2)^{2}
|
critical f(x)=(x^3)/3-(x^2)/2-2x+1/3
|
critical\:f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2x+\frac{1}{3}
|
critical xe^{-3x}
|
critical\:xe^{-3x}
|
domain f(x)=(sqrt(x+2))^2-6
|
domain\:f(x)=(\sqrt{x+2})^{2}-6
|
critical xe^{-2x}
|
critical\:xe^{-2x}
|
critical (2x)/(1+x^2)
|
critical\:\frac{2x}{1+x^{2}}
|
critical f(x,y)=x^3-3x(y-2)+(y-2)^3
|
critical\:f(x,y)=x^{3}-3x(y-2)+(y-2)^{3}
|
critical 2cos(2x)
|
critical\:2\cos(2x)
|
critical f(x)=x^{-3}ln(x)
|
critical\:f(x)=x^{-3}\ln(x)
|
critical x
|
critical\:x
|
critical f(x,y)=x^3-12xy+8y^3
|
critical\:f(x,y)=x^{3}-12xy+8y^{3}
|
critical f(x)=x^4-4x
|
critical\:f(x)=x^{4}-4x
|
f(x,y)=x^3-12xy^2+24y^2
|
f(x,y)=x^{3}-12xy^{2}+24y^{2}
|
critical (-2x^2+5x-1)/(2x-1)
|
critical\:\frac{-2x^{2}+5x-1}{2x-1}
|
range 2x^2-8
|
range\:2x^{2}-8
|
f(x,y)=2x^3+xy^2+5x^2y+2y^2
|
f(x,y)=2x^{3}+xy^{2}+5x^{2}y+2y^{2}
|
y=In(2x)
|
y=In(2x)
|
critical (x^2-3)/(x-2)
|
critical\:\frac{x^{2}-3}{x-2}
|
critical f(x)=(e^{-2x}(-e^x+1))/((1+e^{-x))^3}
|
critical\:f(x)=\frac{e^{-2x}(-e^{x}+1)}{(1+e^{-x})^{3}}
|
critical (x^2+1)/x
|
critical\:\frac{x^{2}+1}{x}
|
critical f(x,y)=xy(1-x-y)
|
critical\:f(x,y)=xy(1-x-y)
|
critical x^6+2x^4
|
critical\:x^{6}+2x^{4}
|
critical f(x)=x^3-7x^2
|
critical\:f(x)=x^{3}-7x^{2}
|
critical (e^{-x})/((1+e^{-x))^2}
|
critical\:\frac{e^{-x}}{(1+e^{-x})^{2}}
|
critical f(x,y)=(x+y)(xy+1)
|
critical\:f(x,y)=(x+y)(xy+1)
|
midpoint (-6,4)(-9,12)
|
midpoint\:(-6,4)(-9,12)
|
critical f(x)=x^{3/4}-3x^{1/4}
|
critical\:f(x)=x^{\frac{3}{4}}-3x^{\frac{1}{4}}
|
critical f(x)=2x^3+9xy^2+15x^2+27y^2
|
critical\:f(x)=2x^{3}+9xy^{2}+15x^{2}+27y^{2}
|
critical e^{-3.5x^2}
|
critical\:e^{-3.5x^{2}}
|
critical f(x)=-2x+tan(x)
|
critical\:f(x)=-2x+\tan(x)
|
critical f(x)=x^{4/5}(2x-9)
|
critical\:f(x)=x^{\frac{4}{5}}(2x-9)
|
critical f(x)=((x^2-3))/(x+2)
|
critical\:f(x)=\frac{(x^{2}-3)}{x+2}
|
critical f(x)=x^2-3x+8
|
critical\:f(x)=x^{2}-3x+8
|
critical f(x)=x^2y-x^2-2y^2
|
critical\:f(x)=x^{2}y-x^{2}-2y^{2}
|
critical f(x)=\sqrt[3]{x^2}(x-4)^2
|
critical\:f(x)=\sqrt[3]{x^{2}}(x-4)^{2}
|
critical f(x)=x^3+3x^2+x
|
critical\:f(x)=x^{3}+3x^{2}+x
|
y=x^2+4
|
y=x^{2}+4
|
f(x,y)=x^2-x^2y+1/3 y^3
|
f(x,y)=x^{2}-x^{2}y+\frac{1}{3}y^{3}
|
critical f(x)=(x-2)^5(x+3)^4
|
critical\:f(x)=(x-2)^{5}(x+3)^{4}
|
f(x,y)=(x-1)^2+(x-y)^4
|
f(x,y)=(x-1)^{2}+(x-y)^{4}
|
critical f(x)=x^4-4x^3-8x^2
|
critical\:f(x)=x^{4}-4x^{3}-8x^{2}
|