f(x,y)=x^3-y^3+xy^2+5x^2y
|
f(x,y)=x^{3}-y^{3}+xy^{2}+5x^{2}y
|
critical f(x)=2sec(x)+tan(x)
|
critical\:f(x)=2\sec(x)+\tan(x)
|
critical f(x)=x^3-6x^2+9x+1
|
critical\:f(x)=x^{3}-6x^{2}+9x+1
|
critical f(x)=(x^2-1)/x
|
critical\:f(x)=\frac{x^{2}-1}{x}
|
critical f(x,y)=4+x^3+y^3-3xy
|
critical\:f(x,y)=4+x^{3}+y^{3}-3xy
|
critical 4x^3-4x
|
critical\:4x^{3}-4x
|
critical f(x,y)=x^3y+12x^2-8y
|
critical\:f(x,y)=x^{3}y+12x^{2}-8y
|
intercepts f(x)=(0.33)^x
|
intercepts\:f(x)=(0.33)^{x}
|
critical x^4-2x^3
|
critical\:x^{4}-2x^{3}
|
critical f(x)=x^2-6x+10
|
critical\:f(x)=x^{2}-6x+10
|
critical 2x
|
critical\:2x
|
critical f(x,y)=x^2+xy+y^2+y
|
critical\:f(x,y)=x^{2}+xy+y^{2}+y
|
f(x,y)=(x^4)/4+(y^4)/4
|
f(x,y)=\frac{x^{4}}{4}+\frac{y^{4}}{4}
|
critical x^2y-x^2-2y^2
|
critical\:x^{2}y-x^{2}-2y^{2}
|
critical f(x)=x^2e^{2x}
|
critical\:f(x)=x^{2}e^{2x}
|
critical x/(-x+1)
|
critical\:\frac{x}{-x+1}
|
critical 2sin(x)
|
critical\:2\sin(x)
|
critical f(x)=e^x(15-x^2)
|
critical\:f(x)=e^{x}(15-x^{2})
|
inverse f(x)=e^{2x}+1
|
inverse\:f(x)=e^{2x}+1
|
critical f(x)=xln(2x)
|
critical\:f(x)=x\ln(2x)
|
critical f(x)=ln(x^2-4)
|
critical\:f(x)=\ln(x^{2}-4)
|
critical f(x)=2x^3-15x^2+36x
|
critical\:f(x)=2x^{3}-15x^{2}+36x
|
critical f(x)=xsqrt(1-x^2)
|
critical\:f(x)=x\sqrt{1-x^{2}}
|
critical f(x)=cos(x)+sin(x)
|
critical\:f(x)=\cos(x)+\sin(x)
|
critical f(x)= 1/(x^2-1)
|
critical\:f(x)=\frac{1}{x^{2}-1}
|
critical (x^2-4)/(x^2-1)
|
critical\:\frac{x^{2}-4}{x^{2}-1}
|
critical f(x)=x^2+4x+3
|
critical\:f(x)=x^{2}+4x+3
|
critical f(x,y)=6x^2-2x^3+3y^2+6xy
|
critical\:f(x,y)=6x^{2}-2x^{3}+3y^{2}+6xy
|
critical f(x)=\sqrt[3]{x-2}
|
critical\:f(x)=\sqrt[3]{x-2}
|
domain f(x)=(3x+7)/(6x)
|
domain\:f(x)=\frac{3x+7}{6x}
|
critical (3x^2)/(x+5)
|
critical\:\frac{3x^{2}}{x+5}
|
critical f(x)=x^4+y^4-2x^2+4xy-2y^2
|
critical\:f(x)=x^{4}+y^{4}-2x^{2}+4xy-2y^{2}
|
critical 3x-x^3
|
critical\:3x-x^{3}
|
critical f(x)=(x^2)/(x-4)
|
critical\:f(x)=\frac{x^{2}}{x-4}
|
critical f(x)=(y-1)/(y^2-3y+3)
|
critical\:f(x)=\frac{y-1}{y^{2}-3y+3}
|
critical xsqrt(8-x^2)
|
critical\:x\sqrt{8-x^{2}}
|
critical g(x)=(x^3)/((x+1))
|
critical\:g(x)=\frac{x^{3}}{(x+1)}
|
critical f(x)=2x^3-15x^2-36x
|
critical\:f(x)=2x^{3}-15x^{2}-36x
|
critical f(x)=-2x^2-24x-71
|
critical\:f(x)=-2x^{2}-24x-71
|
critical f(x)=2x^2+4x
|
critical\:f(x)=2x^{2}+4x
|
inverse f(x)=(x-2)/2
|
inverse\:f(x)=\frac{x-2}{2}
|
critical f(xy)=y^3+x^2-6xy+3x+6y-7
|
critical\:f(xy)=y^{3}+x^{2}-6xy+3x+6y-7
|
critical f(x)=x^{1/3}+2
|
critical\:f(x)=x^{\frac{1}{3}}+2
|
critical f(x,y)=2x^3-15x^2+y^3+6y^2
|
critical\:f(x,y)=2x^{3}-15x^{2}+y^{3}+6y^{2}
|
critical f(x,y)=-150x+2x^3+6xy^2-3y^3
|
critical\:f(x,y)=-150x+2x^{3}+6xy^{2}-3y^{3}
|
critical f(x)=x^3-6x^2-15x+40
|
critical\:f(x)=x^{3}-6x^{2}-15x+40
|
critical f(x)=x^4-18x^2
|
critical\:f(x)=x^{4}-18x^{2}
|
critical x/(x^2+2)
|
critical\:\frac{x}{x^{2}+2}
|
critical f(x)=5x^2+4x
|
critical\:f(x)=5x^{2}+4x
|
critical f(x)=(x^2)/(x^2-1)
|
critical\:f(x)=\frac{x^{2}}{x^{2}-1}
|
critical f(x)=x^2-8x+6ln(x)
|
critical\:f(x)=x^{2}-8x+6\ln(x)
|
periodicity f(x)=4sin(1/(pi)x-2)+8
|
periodicity\:f(x)=4\sin(\frac{1}{\pi}x-2)+8
|
critical f(x)=x^3-3x^2-9x+10
|
critical\:f(x)=x^{3}-3x^{2}-9x+10
|
critical sqrt(x^2-4)
|
critical\:\sqrt{x^{2}-4}
|
critical f(x)=(sqrt(x))/(1+x)
|
critical\:f(x)=\frac{\sqrt{x}}{1+x}
|
critical-0.1x^3+6x^2+400
|
critical\:-0.1x^{3}+6x^{2}+400
|
critical f(x)=2x^2-6x+8
|
critical\:f(x)=2x^{2}-6x+8
|
critical x^3-3x^2+3
|
critical\:x^{3}-3x^{2}+3
|
critical sin^2(x)
|
critical\:\sin^{2}(x)
|
critical f(x)=x^4-2x^2+2
|
critical\:f(x)=x^{4}-2x^{2}+2
|
critical x^4ln(x)
|
critical\:x^{4}\ln(x)
|
critical f(x)=x^3-12x+3
|
critical\:f(x)=x^{3}-12x+3
|
intercepts f(x)=2x^2+5x-3
|
intercepts\:f(x)=2x^{2}+5x-3
|
critical f(x)=x^2+3x-2
|
critical\:f(x)=x^{2}+3x-2
|
critical f(x)=3x^4+4x^3+x
|
critical\:f(x)=3x^{4}+4x^{3}+x
|
critical-sin(x)
|
critical\:-\sin(x)
|
critical sqrt(x^3+8x)
|
critical\:\sqrt{x^{3}+8x}
|
critical f(x)=x^3-12x^2
|
critical\:f(x)=x^{3}-12x^{2}
|
critical x^2-1
|
critical\:x^{2}-1
|
critical f(x)=xsqrt(x+3)
|
critical\:f(x)=x\sqrt{x+3}
|
critical f(x)=(x^2-3)/(x-2)
|
critical\:f(x)=\frac{x^{2}-3}{x-2}
|
critical f(x)=x^{4/5}(x-1)^2
|
critical\:f(x)=x^{\frac{4}{5}}(x-1)^{2}
|
critical f(x)=80x^3-3x^5
|
critical\:f(x)=80x^{3}-3x^{5}
|
asymptotes f(x)=(x/(x^2+4))
|
asymptotes\:f(x)=(\frac{x}{x^{2}+4})
|
critical y=x(1-x^2)^2
|
critical\:y=x(1-x^{2})^{2}
|
critical f(x)=ln(1+x^2)
|
critical\:f(x)=\ln(1+x^{2})
|
critical f(x)=-2x^2-12x-13
|
critical\:f(x)=-2x^{2}-12x-13
|
critical f(x,y)=ysqrt(x)-y^2-x+6y
|
critical\:f(x,y)=y\sqrt{x}-y^{2}-x+6y
|
critical f(x,y)=x^3+12xy^2-15x-24y
|
critical\:f(x,y)=x^{3}+12xy^{2}-15x-24y
|
critical x^{2/3}
|
critical\:x^{\frac{2}{3}}
|
critical f(x,y)=x^3+y^3-6xy
|
critical\:f(x,y)=x^{3}+y^{3}-6xy
|
f(x)=(xy)/(x^2+y^2)
|
f(x)=\frac{xy}{x^{2}+y^{2}}
|
critical f(x)=-2e^{-2x}(x^4-2x^3)
|
critical\:f(x)=-2e^{-2x}(x^{4}-2x^{3})
|
critical f(x)=2x^3-3x^2-12x+15
|
critical\:f(x)=2x^{3}-3x^{2}-12x+15
|
range log_{4}(x+4)-4
|
range\:\log_{4}(x+4)-4
|
intercepts log_{4}(x+2)-2log_{4}(1-x)+1
|
intercepts\:\log_{4}(x+2)-2\log_{4}(1-x)+1
|
critical f(x)=(x-1)^2(x-3)^2
|
critical\:f(x)=(x-1)^{2}(x-3)^{2}
|
critical f(x)=x^3+6x^2-63x
|
critical\:f(x)=x^{3}+6x^{2}-63x
|
critical f(x)=x^{4/5}(x-3)^2
|
critical\:f(x)=x^{\frac{4}{5}}(x-3)^{2}
|
critical f(x)=(x^2-3x+5)e^{-x/3}
|
critical\:f(x)=(x^{2}-3x+5)e^{-\frac{x}{3}}
|
critical x^5-5x^3
|
critical\:x^{5}-5x^{3}
|
critical f(x,y)=x^4+y^4+2x^2y^2+8a^2x^2-8a^2y^2
|
critical\:f(x,y)=x^{4}+y^{4}+2x^{2}y^{2}+8a^{2}x^{2}-8a^{2}y^{2}
|
critical f(x)=x-xy
|
critical\:f(x)=x-xy
|
critical f(x)=x^3+x^2
|
critical\:f(x)=x^{3}+x^{2}
|
critical xe^{3-(x/4)}
|
critical\:xe^{3-(\frac{x}{4})}
|
f(x,y)=(5x+7y-25)e^{-(x^2+xy+y^2)}
|
f(x,y)=(5x+7y-25)e^{-(x^{2}+xy+y^{2})}
|
intercepts f(x)=(-5x)/(3x+5)
|
intercepts\:f(x)=\frac{-5x}{3x+5}
|
critical f(x)=2x+1/x
|
critical\:f(x)=2x+\frac{1}{x}
|
critical f(x,y)=x^2+y^2+2/(xy)
|
critical\:f(x,y)=x^{2}+y^{2}+\frac{2}{xy}
|
critical f(θ)=2cos(θ)+sin^2(θ)
|
critical\:f(θ)=2\cos(θ)+\sin^{2}(θ)
|