critical 1/(x^2)
|
critical\:\frac{1}{x^{2}}
|
critical x/(x^2+9)
|
critical\:\frac{x}{x^{2}+9}
|
critical f(x)=4sqrt(x)-x^2
|
critical\:f(x)=4\sqrt{x}-x^{2}
|
critical x(1-x^2)^2
|
critical\:x(1-x^{2})^{2}
|
critical 1/x
|
critical\:\frac{1}{x}
|
critical f(x,y)=xy+8/x+8/y
|
critical\:f(x,y)=xy+\frac{8}{x}+\frac{8}{y}
|
distance (1,5)(9,8)
|
distance\:(1,5)(9,8)
|
critical f(x)=x^3-6x^2+5
|
critical\:f(x)=x^{3}-6x^{2}+5
|
critical f(x)=-sin(x)
|
critical\:f(x)=-\sin(x)
|
critical f(x)=(e^{3x})/(x+2)
|
critical\:f(x)=\frac{e^{3x}}{x+2}
|
critical f(x)=x^5-5x^4
|
critical\:f(x)=x^{5}-5x^{4}
|
critical x^{2/3}(6-x)^{1/3}
|
critical\:x^{\frac{2}{3}}(6-x)^{\frac{1}{3}}
|
critical (x^2-4)/(x^2+4)
|
critical\:\frac{x^{2}-4}{x^{2}+4}
|
critical f(x)=(x^2)/(x+1)
|
critical\:f(x)=\frac{x^{2}}{x+1}
|
critical f(x)=x-\sqrt[3]{x}
|
critical\:f(x)=x-\sqrt[3]{x}
|
critical f(x)=(x^2)/(x-3)
|
critical\:f(x)=\frac{x^{2}}{x-3}
|
critical f(x)=(x^2+1)/x
|
critical\:f(x)=\frac{x^{2}+1}{x}
|
distance (-6,8)(-3,9)
|
distance\:(-6,8)(-3,9)
|
critical f(x)=x^4e^{-2x}
|
critical\:f(x)=x^{4}e^{-2x}
|
critical y=sqrt(x)-1/(sqrt(x))
|
critical\:y=\sqrt{x}-\frac{1}{\sqrt{x}}
|
critical f(x)=3x^4+4x^3-12x^2
|
critical\:f(x)=3x^{4}+4x^{3}-12x^{2}
|
critical (x^2-4)^{2/3}
|
critical\:(x^{2}-4)^{\frac{2}{3}}
|
critical f(x)=(x^3)/((x+1))
|
critical\:f(x)=\frac{x^{3}}{(x+1)}
|
critical x^{-2}ln(x)
|
critical\:x^{-2}\ln(x)
|
critical f(x)=2x^3+3x^2-36x+2
|
critical\:f(x)=2x^{3}+3x^{2}-36x+2
|
critical x^4-12x^3+48x^2-64x
|
critical\:x^{4}-12x^{3}+48x^{2}-64x
|
critical 2x^3-3x^2-12x
|
critical\:2x^{3}-3x^{2}-12x
|
critical 3x^4+4x^3
|
critical\:3x^{4}+4x^{3}
|
inverse x^{2/3}
|
inverse\:x^{\frac{2}{3}}
|
critical y= x/(x^2-9)
|
critical\:y=\frac{x}{x^{2}-9}
|
critical f(x,y)=9-2x+4y-x^2-4y^2
|
critical\:f(x,y)=9-2x+4y-x^{2}-4y^{2}
|
critical x^2+y^2+xy
|
critical\:x^{2}+y^{2}+xy
|
critical y=x^2
|
critical\:y=x^{2}
|
critical f(x)=(x^2+1)/(x^2-4)
|
critical\:f(x)=\frac{x^{2}+1}{x^{2}-4}
|
critical f(x)=x-1/2 y^2-1/3 x^3+y+6
|
critical\:f(x)=x-\frac{1}{2}y^{2}-\frac{1}{3}x^{3}+y+6
|
critical f(x,y)=x^3+y^3-3x-3y+4
|
critical\:f(x,y)=x^{3}+y^{3}-3x-3y+4
|
critical f(x)=x^3+2x^2+1
|
critical\:f(x)=x^{3}+2x^{2}+1
|
critical x/(x-1)
|
critical\:\frac{x}{x-1}
|
critical sqrt(x)+\sqrt[3]{x}
|
critical\:\sqrt{x}+\sqrt[3]{x}
|
range-6\sqrt[3]{x}
|
range\:-6\sqrt[3]{x}
|
critical f(x)=x^3-6x^2
|
critical\:f(x)=x^{3}-6x^{2}
|
f(x)=sqrt(9-(\sqrt{x^2+y^2)-4)^2}
|
f(x)=\sqrt{9-(\sqrt{x^{2}+y^{2}}-4)^{2}}
|
critical f(x)=x^2-x-ln(x)
|
critical\:f(x)=x^{2}-x-\ln(x)
|
critical f(x)=x^3+3x
|
critical\:f(x)=x^{3}+3x
|
critical f(x,y)=e^{(x^2+0.5y^2-5xy-3x)}
|
critical\:f(x,y)=e^{(x^{2}+0.5y^{2}-5xy-3x)}
|
critical f(x)=e^{-1.5x^2}
|
critical\:f(x)=e^{-1.5x^{2}}
|
critical 65x^{6/7}+x^{13/7}
|
critical\:65x^{\frac{6}{7}}+x^{\frac{13}{7}}
|
critical f(x)=t-\sqrt[3]{t}
|
critical\:f(x)=t-\sqrt[3]{t}
|
critical (4+x)/(x-4)
|
critical\:\frac{4+x}{x-4}
|
critical xsqrt(x+3)
|
critical\:x\sqrt{x+3}
|
inverse f(x)= x/5+3
|
inverse\:f(x)=\frac{x}{5}+3
|
critical (e^x)/(x-1)
|
critical\:\frac{e^{x}}{x-1}
|
critical y= x/(1-x)
|
critical\:y=\frac{x}{1-x}
|
critical x^2-5x+6
|
critical\:x^{2}-5x+6
|
critical f(x)=xe^{-2x}
|
critical\:f(x)=xe^{-2x}
|
critical f(x)=x^2+6x+9
|
critical\:f(x)=x^{2}+6x+9
|
critical x+sin(x)
|
critical\:x+\sin(x)
|
critical x^2+2/x
|
critical\:x^{2}+\frac{2}{x}
|
critical f(x)=x^{3/4}-6x^{1/4}
|
critical\:f(x)=x^{\frac{3}{4}}-6x^{\frac{1}{4}}
|
critical 2x^3-3x^2-36x
|
critical\:2x^{3}-3x^{2}-36x
|
critical x^3-3x^2+4
|
critical\:x^{3}-3x^{2}+4
|
range f(x)=x^2-2x-8
|
range\:f(x)=x^{2}-2x-8
|
critical f(x)=x^3+3x^2
|
critical\:f(x)=x^{3}+3x^{2}
|
critical f(x)=y=5x^2-20x+2
|
critical\:f(x)=y=5x^{2}-20x+2
|
critical (5x)/(x^2-4)
|
critical\:\frac{5x}{x^{2}-4}
|
critical f(x)=(x^3)/(x^2-4)
|
critical\:f(x)=\frac{x^{3}}{x^{2}-4}
|
critical f(x)=x^{4/3}+x^{1/3}
|
critical\:f(x)=x^{\frac{4}{3}}+x^{\frac{1}{3}}
|
critical f(x)=x^2(x-1)
|
critical\:f(x)=x^{2}(x-1)
|
critical f(x)=3x^4-4x^3+6
|
critical\:f(x)=3x^{4}-4x^{3}+6
|
critical f(x)=x^3-3x^2-9x+5
|
critical\:f(x)=x^{3}-3x^{2}-9x+5
|
critical f(x)=cos(3x)
|
critical\:f(x)=\cos(3x)
|
critical f(x)=3x^4+4x^3-6x^2
|
critical\:f(x)=3x^{4}+4x^{3}-6x^{2}
|
inverse (x-4)^3
|
inverse\:(x-4)^{3}
|
intercepts f(x)=2x^3+6x^2-90x+5
|
intercepts\:f(x)=2x^{3}+6x^{2}-90x+5
|
asymptotes (x+1)/((x-3)^2)
|
asymptotes\:\frac{x+1}{(x-3)^{2}}
|
critical csc(x)
|
critical\:\csc(x)
|
critical f(x)=8x^3+81x^2-42x-8
|
critical\:f(x)=8x^{3}+81x^{2}-42x-8
|
critical f(x)=e^x
|
critical\:f(x)=e^{x}
|
critical f(x,y)=3x^3-5y^2-225x+70y+23
|
critical\:f(x,y)=3x^{3}-5y^{2}-225x+70y+23
|
critical f(x)=((x-1))/(x^2-x+1)
|
critical\:f(x)=\frac{(x-1)}{x^{2}-x+1}
|
critical f(x)=6x^3-9x^2-36x
|
critical\:f(x)=6x^{3}-9x^{2}-36x
|
critical f(x)=x^3+6x^2-36x
|
critical\:f(x)=x^{3}+6x^{2}-36x
|
critical x/(x^2-6x+8)
|
critical\:\frac{x}{x^{2}-6x+8}
|
critical f(x)=(y-3)/(y^2-3y+9)
|
critical\:f(x)=\frac{y-3}{y^{2}-3y+9}
|
critical f(x)=(4x)/(1+x^2)
|
critical\:f(x)=\frac{4x}{1+x^{2}}
|
critical points f(x)=3y^4-12y^2
|
critical\:points\:f(x)=3y^{4}-12y^{2}
|
critical ((x+1)^3)/((x-1)^2)
|
critical\:\frac{(x+1)^{3}}{(x-1)^{2}}
|
critical f(x)=x^2-6x
|
critical\:f(x)=x^{2}-6x
|
critical f(x)=(x^2)/(sqrt(x+1))
|
critical\:f(x)=\frac{x^{2}}{\sqrt{x+1}}
|
critical f(x)=(e^{4x})/(x+1)
|
critical\:f(x)=\frac{e^{4x}}{x+1}
|
critical x-3x^{1/3}
|
critical\:x-3x^{\frac{1}{3}}
|
critical f(x)=(x-4)^2+10
|
critical\:f(x)=(x-4)^{2}+10
|
critical f(x,y)=(x^2+y^2)e^{y^2-x^2}
|
critical\:f(x,y)=(x^{2}+y^{2})e^{y^{2}-x^{2}}
|
critical f(x)=x^4
|
critical\:f(x)=x^{4}
|
critical f(x,y)=100+4x-9y+2xy-x^2+y^3
|
critical\:f(x,y)=100+4x-9y+2xy-x^{2}+y^{3}
|
critical f(x)=x^2-x
|
critical\:f(x)=x^{2}-x
|
inverse f(x)=(sqrt(7y+637))/7-3
|
inverse\:f(x)=\frac{\sqrt{7y+637}}{7}-3
|
critical f(x)=3x^4+4x^3-12x^2+10
|
critical\:f(x)=3x^{4}+4x^{3}-12x^{2}+10
|
critical (e^x)/(x^2)
|
critical\:\frac{e^{x}}{x^{2}}
|
critical f(x)=x^{1/3}(x+3)^{2/3}
|
critical\:f(x)=x^{\frac{1}{3}}(x+3)^{\frac{2}{3}}
|