inverse of f(x)=(x+4)^2+1
|
inverse\:f(x)=(x+4)^{2}+1
|
inflection points of f(x)=(x^2)/(2x^2+3)
|
inflection\:points\:f(x)=\frac{x^{2}}{2x^{2}+3}
|
asymptotes of f(x)=(-4x+20)/(x^2-9x+20)
|
asymptotes\:f(x)=\frac{-4x+20}{x^{2}-9x+20}
|
asymptotes of f(x)= x/(x-4)
|
asymptotes\:f(x)=\frac{x}{x-4}
|
distance (5,-2)(2,-5)
|
distance\:(5,-2)(2,-5)
|
inverse of f(x)=9-6x^3
|
inverse\:f(x)=9-6x^{3}
|
extreme points of f(x)=6x^3-5x+12
|
extreme\:points\:f(x)=6x^{3}-5x+12
|
intercepts of 4x^2+8x-3
|
intercepts\:4x^{2}+8x-3
|
asymptotes of y=(x^2-x)/(x^2-8x+7)
|
asymptotes\:y=\frac{x^{2}-x}{x^{2}-8x+7}
|
extreme points of f(x)=15t+6t^2-t^3
|
extreme\:points\:f(x)=15t+6t^{2}-t^{3}
|
range of x^2-16x+63
|
range\:x^{2}-16x+63
|
intercepts of f(x)=-2x^3+10x^2+48x
|
intercepts\:f(x)=-2x^{3}+10x^{2}+48x
|
slope of 3y+x=12
|
slope\:3y+x=12
|
range of (x+2)/(x+4)
|
range\:\frac{x+2}{x+4}
|
domain of f(x)=-x+10
|
domain\:f(x)=-x+10
|
domain of f(x)=3x-2/(sqrt(x+1))
|
domain\:f(x)=3x-\frac{2}{\sqrt{x+1}}
|
extreme points of sin^2(x)
|
extreme\:points\:\sin^{2}(x)
|
domain of f(x)=(x+3)/(x^2-9)
|
domain\:f(x)=\frac{x+3}{x^{2}-9}
|
shift f(x)=y=3sin(x/2 (-pi)/3)
|
shift\:f(x)=y=3\sin(\frac{x}{2}\frac{-\pi}{3})
|
asymptotes of f(x)=(x-3)(x+2)
|
asymptotes\:f(x)=(x-3)(x+2)
|
critical points of sqrt(x+3)
|
critical\:points\:\sqrt{x+3}
|
domain of f(x)=(sqrt(x+1))/(x-8)
|
domain\:f(x)=\frac{\sqrt{x+1}}{x-8}
|
symmetry y=-(x+3)^2-1
|
symmetry\:y=-(x+3)^{2}-1
|
slope intercept of-2y-5x=2-10x
|
slope\:intercept\:-2y-5x=2-10x
|
range of f(x)=-2x^2+5x-6
|
range\:f(x)=-2x^{2}+5x-6
|
domain of f(x)=(sqrt(x-1))/(2x^2-3)
|
domain\:f(x)=\frac{\sqrt{x-1}}{2x^{2}-3}
|
inverse of y=100-x^2
|
inverse\:y=100-x^{2}
|
inverse of f(x)=(x-7)/(x+4)
|
inverse\:f(x)=\frac{x-7}{x+4}
|
domain of f(x)= 1/(sqrt(x-9))
|
domain\:f(x)=\frac{1}{\sqrt{x-9}}
|
range of-6cos(5x)
|
range\:-6\cos(5x)
|
domain of 6x^2+8x-1
|
domain\:6x^{2}+8x-1
|
range of f(x)=(10x-1)/(3-5x)
|
range\:f(x)=\frac{10x-1}{3-5x}
|
domain of f(x)=6x^2-x-12
|
domain\:f(x)=6x^{2}-x-12
|
intercepts of f(x)=y^2-2
|
intercepts\:f(x)=y^{2}-2
|
domain of f(x)=4x(x+3)(x-4)
|
domain\:f(x)=4x(x+3)(x-4)
|
range of xe^{-x^2}
|
range\:xe^{-x^{2}}
|
inverse of f(x)=(x+3)/(x-3)
|
inverse\:f(x)=\frac{x+3}{x-3}
|
domain of-1/(x^2)
|
domain\:-\frac{1}{x^{2}}
|
asymptotes of f(x)= 1/(16-x^2)
|
asymptotes\:f(x)=\frac{1}{16-x^{2}}
|
inverse of f(x)=-\sqrt[5]{x}-3
|
inverse\:f(x)=-\sqrt[5]{x}-3
|
extreme points of f(x)=4x+2/x
|
extreme\:points\:f(x)=4x+\frac{2}{x}
|
slope intercept of 9/4 x+3y= 9/4
|
slope\:intercept\:\frac{9}{4}x+3y=\frac{9}{4}
|
range of |x|-1
|
range\:|x|-1
|
asymptotes of f(x)=(-3x)/(x+2)
|
asymptotes\:f(x)=\frac{-3x}{x+2}
|
y=sqrt(1-x^2)
|
y=\sqrt{1-x^{2}}
|
intercepts of f(x)=(x(x-2)^2)/((x+3)^2)
|
intercepts\:f(x)=\frac{x(x-2)^{2}}{(x+3)^{2}}
|
asymptotes of (x^2)/(x^2+x-2)
|
asymptotes\:\frac{x^{2}}{x^{2}+x-2}
|
inverse of f(x)=-0.06(x+2)^4+1.5
|
inverse\:f(x)=-0.06(x+2)^{4}+1.5
|
parity f(x)=y^2+17
|
parity\:f(x)=y^{2}+17
|
inverse of f(x)=(e^x+e^{-x})/2
|
inverse\:f(x)=\frac{e^{x}+e^{-x}}{2}
|
inflection points of f(x)=x^4-7x^3
|
inflection\:points\:f(x)=x^{4}-7x^{3}
|
frequency cos(3x)
|
frequency\:\cos(3x)
|
amplitude of f(x)=5cos(x)
|
amplitude\:f(x)=5\cos(x)
|
extreme points of f(x)=x^4-8x^2
|
extreme\:points\:f(x)=x^{4}-8x^{2}
|
asymptotes of f(x)= 3/(x-1)
|
asymptotes\:f(x)=\frac{3}{x-1}
|
range of f(x)=x^2-6x+1
|
range\:f(x)=x^{2}-6x+1
|
critical points of f(x)=x^2-x-20
|
critical\:points\:f(x)=x^{2}-x-20
|
critical points of f(x)=cos(4x)
|
critical\:points\:f(x)=\cos(4x)
|
parallel 9x-y=-18,\at (0,0)
|
parallel\:9x-y=-18,\at\:(0,0)
|
domain of f(x)=-sqrt(x-1)-2
|
domain\:f(x)=-\sqrt{x-1}-2
|
asymptotes of f(x)=(x^2-x-2)/(x^2-5x+6)
|
asymptotes\:f(x)=\frac{x^{2}-x-2}{x^{2}-5x+6}
|
parity x^{x^x}
|
parity\:x^{x^{x}}
|
inverse of f(x)=11x
|
inverse\:f(x)=11x
|
domain of f(x)=sqrt(1-2/x)
|
domain\:f(x)=\sqrt{1-\frac{2}{x}}
|
critical points of f(x)=5+4/x+(16)/(x^2)
|
critical\:points\:f(x)=5+\frac{4}{x}+\frac{16}{x^{2}}
|
domain of (5x-10)/(27-6x)
|
domain\:\frac{5x-10}{27-6x}
|
domain of f(x)= 1/(sqrt(14-t))
|
domain\:f(x)=\frac{1}{\sqrt{14-t}}
|
parity y=(-8x^3)/(3x^2-1)
|
parity\:y=\frac{-8x^{3}}{3x^{2}-1}
|
asymptotes of f(x)=y= 1/x-3
|
asymptotes\:f(x)=y=\frac{1}{x}-3
|
inverse of f(x)=x2+3
|
inverse\:f(x)=x2+3
|
range of 4/x
|
range\:\frac{4}{x}
|
domain of f(x)=-10< x< 10
|
domain\:f(x)=-10\lt\:x\lt\:10
|
intercepts of 1/(X^2)
|
intercepts\:\frac{1}{X^{2}}
|
amplitude of f(x)=2sin(8x)
|
amplitude\:f(x)=2\sin(8x)
|
monotone intervals f(x)=x^6-3x^5
|
monotone\:intervals\:f(x)=x^{6}-3x^{5}
|
extreme points of f(x)=-3x^4+28x^3-60x^2
|
extreme\:points\:f(x)=-3x^{4}+28x^{3}-60x^{2}
|
perpendicular y= 2/5 x+1,\at (10,-8)
|
perpendicular\:y=\frac{2}{5}x+1,\at\:(10,-8)
|
intercepts of f(x)= 5/x
|
intercepts\:f(x)=\frac{5}{x}
|
inverse of f(x)=ln(x^2)
|
inverse\:f(x)=\ln(x^{2})
|
inverse of y=log_{b}(x)
|
inverse\:y=\log_{b}(x)
|
periodicity of \sqrt[3]{cos^2(x^2-x)x^2}
|
periodicity\:\sqrt[3]{\cos^{2}(x^{2}-x)x^{2}}
|
inverse of f(x)=((x+17))/(x-14)
|
inverse\:f(x)=\frac{(x+17)}{x-14}
|
domain of sqrt(x^2-9)
|
domain\:\sqrt{x^{2}-9}
|
distance (0,-7)(-5,-9)
|
distance\:(0,-7)(-5,-9)
|
domain of f(x)=(5x)/(x+3)-3
|
domain\:f(x)=\frac{5x}{x+3}-3
|
slope intercept of 14x+6y=36
|
slope\:intercept\:14x+6y=36
|
asymptotes of f(x)= x/(2x-3)
|
asymptotes\:f(x)=\frac{x}{2x-3}
|
inverse of x^2+5x
|
inverse\:x^{2}+5x
|
inverse of f(x)=6log_{5}(-4x)-7
|
inverse\:f(x)=6\log_{5}(-4x)-7
|
domain of =sqrt(3x+18)
|
domain\:=\sqrt{3x+18}
|
inverse of f(x)=-(3x+1)/x
|
inverse\:f(x)=-\frac{3x+1}{x}
|
critical points of 9x^2-x^3-3
|
critical\:points\:9x^{2}-x^{3}-3
|
asymptotes of f(x)=x^2
|
asymptotes\:f(x)=x^{2}
|
perpendicular-5x+y=5,\at (5,5)
|
perpendicular\:-5x+y=5,\at\:(5,5)
|
inverse of 4-3e^{sqrt(x)}
|
inverse\:4-3e^{\sqrt{x}}
|
asymptotes of (x^3-x)/(x^2-6x+5)
|
asymptotes\:\frac{x^{3}-x}{x^{2}-6x+5}
|
midpoint (-1,3)(3,-5)
|
midpoint\:(-1,3)(3,-5)
|
domain of f(x)= 1/(x^2-x+1)
|
domain\:f(x)=\frac{1}{x^{2}-x+1}
|
shift 2cos((2pi)/4 (x+2))-1
|
shift\:2\cos(\frac{2\pi}{4}(x+2))-1
|
slope intercept of (-7,-15)(0-14)
|
slope\:intercept\:(-7,-15)(0-14)
|