domain of ln(t+1)
|
domain\:\ln(t+1)
|
domain of f(x)=10sqrt(x-3)
|
domain\:f(x)=10\sqrt{x-3}
|
inverse of f(x)=(x+9)^2
|
inverse\:f(x)=(x+9)^{2}
|
amplitude of f(x)=7sin(x)
|
amplitude\:f(x)=7\sin(x)
|
intercepts of (-x+4)/(2x+3)
|
intercepts\:\frac{-x+4}{2x+3}
|
inverse of x^6
|
inverse\:x^{6}
|
intercepts of (3x+6)/(x^2-x-2)
|
intercepts\:\frac{3x+6}{x^{2}-x-2}
|
extreme points of x^2-x-2
|
extreme\:points\:x^{2}-x-2
|
-2x^2
|
-2x^{2}
|
inverse of f(x)=x^2,x<= 0
|
inverse\:f(x)=x^{2},x\le\:0
|
asymptotes of f(x)=(x+1)/(x^2)
|
asymptotes\:f(x)=\frac{x+1}{x^{2}}
|
midpoint (-5,0)(4,-6)
|
midpoint\:(-5,0)(4,-6)
|
inverse of f(x)=6x-7
|
inverse\:f(x)=6x-7
|
symmetry (x^3-x)/(x^2-4)
|
symmetry\:\frac{x^{3}-x}{x^{2}-4}
|
intercepts of f(x)=x^3+5x^2-x-5
|
intercepts\:f(x)=x^{3}+5x^{2}-x-5
|
parallel x-5y=15
|
parallel\:x-5y=15
|
midpoint (0,10)(8,16)
|
midpoint\:(0,10)(8,16)
|
domain of f(x)= 6/(x+5)
|
domain\:f(x)=\frac{6}{x+5}
|
domain of f(x)=2x^2+x
|
domain\:f(x)=2x^{2}+x
|
domain of f(x)=sqrt(x^2-2x-3)
|
domain\:f(x)=\sqrt{x^{2}-2x-3}
|
midpoint (24,-1)(29,2)
|
midpoint\:(24,-1)(29,2)
|
slope of y= 2/5 x-4
|
slope\:y=\frac{2}{5}x-4
|
domain of f(x)=(3/(x^2-1))+1
|
domain\:f(x)=(\frac{3}{x^{2}-1})+1
|
range of y=sec(x)
|
range\:y=\sec(x)
|
domain of f(x)=sqrt(3+1)
|
domain\:f(x)=\sqrt{3+1}
|
extreme points of f(x)= x/((ln(x))^2)
|
extreme\:points\:f(x)=\frac{x}{(\ln(x))^{2}}
|
parity f(x)= 1/(x+6)
|
parity\:f(x)=\frac{1}{x+6}
|
midpoint (3,3)(-3,1)
|
midpoint\:(3,3)(-3,1)
|
asymptotes of (x^2-3x-4)/(1+4x+4x^2)
|
asymptotes\:\frac{x^{2}-3x-4}{1+4x+4x^{2}}
|
parity f(x)= 2/x+2x
|
parity\:f(x)=\frac{2}{x}+2x
|
slope of (8x)/5-2y=-8
|
slope\:\frac{8x}{5}-2y=-8
|
line m=-1/3 ,\at (7/3 , 2/3)
|
line\:m=-\frac{1}{3},\at\:(\frac{7}{3},\frac{2}{3})
|
inverse of y=1+log_{3}(x)
|
inverse\:y=1+\log_{3}(x)
|
slope intercept of y=4x+6
|
slope\:intercept\:y=4x+6
|
symmetry y=x^2-x-20
|
symmetry\:y=x^{2}-x-20
|
range of (4x-3)/(6-5x)
|
range\:\frac{4x-3}{6-5x}
|
domain of ((x-1)(x+3))/(x^2-4)
|
domain\:\frac{(x-1)(x+3)}{x^{2}-4}
|
slope of 4x-6y=-8
|
slope\:4x-6y=-8
|
intercepts of f(x)=2x^5-3x+7
|
intercepts\:f(x)=2x^{5}-3x+7
|
domain of f(x)=csc(x)
|
domain\:f(x)=\csc(x)
|
asymptotes of f(x)=(9e^x)/(e^x-5)
|
asymptotes\:f(x)=\frac{9e^{x}}{e^{x}-5}
|
extreme points of f(x)=x^{1/7}(x+8)
|
extreme\:points\:f(x)=x^{\frac{1}{7}}(x+8)
|
asymptotes of f(x)= 4/(x-1)
|
asymptotes\:f(x)=\frac{4}{x-1}
|
domain of (8x+9)/(x+8)
|
domain\:\frac{8x+9}{x+8}
|
x^2+2x+5
|
x^{2}+2x+5
|
range of (2x-1)/(x^2-1)
|
range\:\frac{2x-1}{x^{2}-1}
|
intercepts of x^2+4
|
intercepts\:x^{2}+4
|
parity ((x+8)/(x^3+x-1))
|
parity\:(\frac{x+8}{x^{3}+x-1})
|
inverse of (x-3)/2
|
inverse\:\frac{x-3}{2}
|
inverse of f(x)=sqrt(x-4)x>= 4
|
inverse\:f(x)=\sqrt{x-4}x\ge\:4
|
domain of 1/5 x-9/5
|
domain\:\frac{1}{5}x-\frac{9}{5}
|
critical points of 12+4x-x^2
|
critical\:points\:12+4x-x^{2}
|
line y=2x+3
|
line\:y=2x+3
|
line (-7,9)(-7,-4)
|
line\:(-7,9)(-7,-4)
|
domain of f(x)=-x^2-8x+9
|
domain\:f(x)=-x^{2}-8x+9
|
range of f(x)=(8x)/(x+5)
|
range\:f(x)=\frac{8x}{x+5}
|
domain of f(x)=\sqrt[3]{1-\sqrt[3]{1-x}}
|
domain\:f(x)=\sqrt[3]{1-\sqrt[3]{1-x}}
|
asymptotes of f(x)=arctan(x/(2-x))
|
asymptotes\:f(x)=\arctan(\frac{x}{2-x})
|
inverse of f(x)=3log_{5}(x+1)-2
|
inverse\:f(x)=3\log_{5}(x+1)-2
|
range of (x^2+3x-2)/(x^2+2x-3)
|
range\:\frac{x^{2}+3x-2}{x^{2}+2x-3}
|
inflection points of x^3-6x^2
|
inflection\:points\:x^{3}-6x^{2}
|
inflection points of e^{-x}
|
inflection\:points\:e^{-x}
|
inverse of f(x)=4x^2+7
|
inverse\:f(x)=4x^{2}+7
|
range of (sqrt(3-x))/(sqrt(x-2))
|
range\:\frac{\sqrt{3-x}}{\sqrt{x-2}}
|
slope intercept of y= 1/2 x+2
|
slope\:intercept\:y=\frac{1}{2}x+2
|
inverse of (2x)/(x-5)
|
inverse\:\frac{2x}{x-5}
|
parallel y= 1/5 x
|
parallel\:y=\frac{1}{5}x
|
inflection points of f(x)=x^3-6x^2+7
|
inflection\:points\:f(x)=x^{3}-6x^{2}+7
|
range of f(x)=3(x-6)^2+1
|
range\:f(x)=3(x-6)^{2}+1
|
midpoint (-1,10)(11,12)
|
midpoint\:(-1,10)(11,12)
|
intercepts of f(x)=(x^3-4x)/(3x^2+3x-6)
|
intercepts\:f(x)=\frac{x^{3}-4x}{3x^{2}+3x-6}
|
domain of f(x)=((sqrt(x-3)))/(x+2)
|
domain\:f(x)=\frac{(\sqrt{x-3})}{x+2}
|
domain of y=sqrt((2x+1)/(x-1))
|
domain\:y=\sqrt{\frac{2x+1}{x-1}}
|
domain of x^2-25
|
domain\:x^{2}-25
|
asymptotes of f(x)=(x^2+2)/(x-6)
|
asymptotes\:f(x)=\frac{x^{2}+2}{x-6}
|
domain of 2/((x+2))
|
domain\:\frac{2}{(x+2)}
|
domain of 6x+9
|
domain\:6x+9
|
symmetry f(x)=x^2-6x+3
|
symmetry\:f(x)=x^{2}-6x+3
|
monotone intervals f(x)=(x-3)/(x^2+1)
|
monotone\:intervals\:f(x)=\frac{x-3}{x^{2}+1}
|
intercepts of f(x)=(4x+1)^3(4x^2-4x+1)
|
intercepts\:f(x)=(4x+1)^{3}(4x^{2}-4x+1)
|
slope intercept of 4y-4x=16
|
slope\:intercept\:4y-4x=16
|
inverse of f(x)= 3/(x+6)
|
inverse\:f(x)=\frac{3}{x+6}
|
asymptotes of y=2tan(1/2 (x-pi))+3
|
asymptotes\:y=2\tan(\frac{1}{2}(x-\pi))+3
|
inverse of f(x)=(7x+9)/(5x-7)
|
inverse\:f(x)=\frac{7x+9}{5x-7}
|
domain of f(x)= 1/((\frac{x+3){x-1})^2}
|
domain\:f(x)=\frac{1}{(\frac{x+3}{x-1})^{2}}
|
monotone intervals f(x)=x^2+3x+3
|
monotone\:intervals\:f(x)=x^{2}+3x+3
|
intercepts of y=x^2-5
|
intercepts\:y=x^{2}-5
|
asymptotes of (2x-1)/(2x+1)
|
asymptotes\:\frac{2x-1}{2x+1}
|
inverse of e^x-2
|
inverse\:e^{x}-2
|
inverse of f(x)=8(x/2-3)
|
inverse\:f(x)=8(\frac{x}{2}-3)
|
range of-sqrt(x+3)
|
range\:-\sqrt{x+3}
|
inverse of f(x)=-1/2 (x-3)+4
|
inverse\:f(x)=-\frac{1}{2}(x-3)+4
|
domain of f(x)=2sqrt(x+1)
|
domain\:f(x)=2\sqrt{x+1}
|
extreme points of (24000x^2+900x-150)
|
extreme\:points\:(24000x^{2}+900x-150)
|
range of (x^2-16)/(x+4)
|
range\:\frac{x^{2}-16}{x+4}
|
parallel 2/3 x+2y=(-8)/3 ,\at (-5,5)
|
parallel\:\frac{2}{3}x+2y=\frac{-8}{3},\at\:(-5,5)
|
domain of sqrt(-(x+4)(x-4))-sqrt(x+1)
|
domain\:\sqrt{-(x+4)(x-4)}-\sqrt{x+1}
|
range of (x+1)/(x-1)
|
range\:\frac{x+1}{x-1}
|
midpoint (4,7),(1,1)
|
midpoint\:(4,7),(1,1)
|
slope of 1/4 \land (0,-2)
|
slope\:\frac{1}{4}\land\:(0,-2)
|