domain f(x)=2x-5,x<3
|
domain\:f(x)=2x-5,x<3
|
domain (sqrt(x-2))/(sqrt(x-3))
|
domain\:\frac{\sqrt{x-2}}{\sqrt{x-3}}
|
domain f(x)=3tan(x)
|
domain\:f(x)=3\tan(x)
|
domain f(x)=(x^2-4)/x
|
domain\:f(x)=\frac{x^{2}-4}{x}
|
domain f(x)=2^{x+1}+3
|
domain\:f(x)=2^{x+1}+3
|
domain f(x)=x(ln(x))^2
|
domain\:f(x)=x(\ln(x))^{2}
|
domain f(x)=(1/2)^x+3
|
domain\:f(x)=(\frac{1}{2})^{x}+3
|
domain f(x)=-3ln(x)
|
domain\:f(x)=-3\ln(x)
|
domain f(x)=(x-1)^2+1
|
domain\:f(x)=(x-1)^{2}+1
|
domain f(x)=sqrt(-(|x-2|-4)/(x^2+x+1))
|
domain\:f(x)=\sqrt{-\frac{\left|x-2\right|-4}{x^{2}+x+1}}
|
periodicity 2sin(2x-(pi)/6)+2
|
periodicity\:2\sin(2x-\frac{\pi}{6})+2
|
domain f(x)=(x+1)/(x^2-x-6)
|
domain\:f(x)=\frac{x+1}{x^{2}-x-6}
|
domain (x+9)/(x^2-81)
|
domain\:\frac{x+9}{x^{2}-81}
|
domain f(x)=(x^2+2x)/(x+1)
|
domain\:f(x)=\frac{x^{2}+2x}{x+1}
|
domain 2x^2-6x+4-3x-5
|
domain\:2x^{2}-6x+4-3x-5
|
domain y= 1/(x-5)
|
domain\:y=\frac{1}{x-5}
|
domain 3x^{2/3}-x^2
|
domain\:3x^{\frac{2}{3}}-x^{2}
|
domain sqrt(10-x)
|
domain\:\sqrt{10-x}
|
domain x^2+5x+6
|
domain\:x^{2}+5x+6
|
domain f(x)=x^4-4x^2
|
domain\:f(x)=x^{4}-4x^{2}
|
domain f(x)=x^4-4x
|
domain\:f(x)=x^{4}-4x
|
symmetry-2x^2+16x-31
|
symmetry\:-2x^{2}+16x-31
|
intercepts (2x^2-18)/(x+3)
|
intercepts\:\frac{2x^{2}-18}{x+3}
|
domain g(z)=sqrt(-10z-5)
|
domain\:g(z)=\sqrt{-10z-5}
|
domain f(x)=(-3)/(x-1)
|
domain\:f(x)=\frac{-3}{x-1}
|
domain f(x)=|x|+3
|
domain\:f(x)=\left|x\right|+3
|
domain f(x)=sqrt(x-2)+x
|
domain\:f(x)=\sqrt{x-2}+x
|
domain f(x)=((2-x))/((x-3))
|
domain\:f(x)=\frac{(2-x)}{(x-3)}
|
domain f(x)=arctan(1/x)
|
domain\:f(x)=\arctan(\frac{1}{x})
|
domain f(x)=(sqrt(x+8))/(x-2)
|
domain\:f(x)=\frac{\sqrt{x+8}}{x-2}
|
domain (x+5)/(x^2+x-6)
|
domain\:\frac{x+5}{x^{2}+x-6}
|
domain h(x)=sqrt(x-3)
|
domain\:h(x)=\sqrt{x-3}
|
domain (12)/(|x|-3)
|
domain\:\frac{12}{\left|x\right|-3}
|
critical points 12h^2-108h+665
|
critical\:points\:12h^{2}-108h+665
|
domain-4x-12
|
domain\:-4x-12
|
domain (x+5)/(x^2-4)
|
domain\:\frac{x+5}{x^{2}-4}
|
domain 3-5x
|
domain\:3-5x
|
domain y=(x-2)/(x^2-3x+2)
|
domain\:y=\frac{x-2}{x^{2}-3x+2}
|
domain arccos(x-2)+π
|
domain\:\arccos(x-2)+π
|
domain f(x)= 1/3 arccos(x/4-2)
|
domain\:f(x)=\frac{1}{3}\arccos(\frac{x}{4}-2)
|
domain 2X-3
|
domain\:2X-3
|
domain-3(3)^{x-3}
|
domain\:-3(3)^{x-3}
|
domain f(x)=sqrt(x-1)-1
|
domain\:f(x)=\sqrt{x-1}-1
|
domain f(x)=ln(x^2+2x-3)
|
domain\:f(x)=\ln(x^{2}+2x-3)
|
parity 12xsec^2(3x)+12x^2sec(3x)+8xtan(3x)+3sec^2(3x)+4tan(3x)=y
|
parity\:12x\sec^{2}(3x)+12x^{2}\sec(3x)+8x\tan(3x)+3\sec^{2}(3x)+4\tan(3x)=y
|
domain f(x)= x/(coth(x-1))
|
domain\:f(x)=\frac{x}{\coth(x-1)}
|
domain f(x)=sqrt(-7-x)
|
domain\:f(x)=\sqrt{-7-x}
|
domain f(x)=(4x+2)/(sqrt(-4+6x-2x^2))+sqrt(2x-3)
|
domain\:f(x)=\frac{4x+2}{\sqrt{-4+6x-2x^{2}}}+\sqrt{2x-3}
|
domain 4-2x
|
domain\:4-2x
|
domain (x^2-1)/(x^2+1)
|
domain\:\frac{x^{2}-1}{x^{2}+1}
|
domain f(x)=-2cos(3x-π/2)
|
domain\:f(x)=-2\cos(3x-\frac{π}{2})
|
domain f(x)=6x-9
|
domain\:f(x)=6x-9
|
domain f(x)=log_{10}(x-7)
|
domain\:f(x)=\log_{10}(x-7)
|
domain 4/5 x
|
domain\:\frac{4}{5}x
|
domain log_{2}(2x-5)-log_{2}(x+3)
|
domain\:\log_{2}(2x-5)-\log_{2}(x+3)
|
inverse x^2+4x+4
|
inverse\:x^{2}+4x+4
|
domain f(x,y)= 1/2 x-6/x
|
domain\:f(x,y)=\frac{1}{2}x-\frac{6}{x}
|
domain f(x)=sqrt(21-x)
|
domain\:f(x)=\sqrt{21-x}
|
domain f(x)=sqrt(1-x)-1
|
domain\:f(x)=\sqrt{1-x}-1
|
domain f(x)=x^3-3x^2+4
|
domain\:f(x)=x^{3}-3x^{2}+4
|
domain f(x)=8x^2-7x+9
|
domain\:f(x)=8x^{2}-7x+9
|
domain f(x)=sqrt(2-\sqrt{2-x)}
|
domain\:f(x)=\sqrt{2-\sqrt{2-x}}
|
domain f(x)=ln(11-7x)
|
domain\:f(x)=\ln(11-7x)
|
domain 2x-8
|
domain\:2x-8
|
domain f(x)=ln(x^2-3x-4)
|
domain\:f(x)=\ln(x^{2}-3x-4)
|
domain f(x)= 6/(x(x+9))
|
domain\:f(x)=\frac{6}{x(x+9)}
|
critical points f(x)=x^4-18x^2+81
|
critical\:points\:f(x)=x^{4}-18x^{2}+81
|
domain f(x)=(x+3)/(4-sqrt(x^2-25))
|
domain\:f(x)=\frac{x+3}{4-\sqrt{x^{2}-25}}
|
domain f(x)=(x^2+x-6)/(x^3-3x^2-16x+48)
|
domain\:f(x)=\frac{x^{2}+x-6}{x^{3}-3x^{2}-16x+48}
|
domain f(x)=sqrt((x-1))log_{10}(2-x)
|
domain\:f(x)=\sqrt{(x-1)}\log_{10}(2-x)
|
domain y= 1/(4-x^2)
|
domain\:y=\frac{1}{4-x^{2}}
|
domain (x+4)^2
|
domain\:(x+4)^{2}
|
domain f(x)=(1/2)x^2
|
domain\:f(x)=(\frac{1}{2})x^{2}
|
domain f(x,y)=1+sqrt(4-y^2)
|
domain\:f(x,y)=1+\sqrt{4-y^{2}}
|
domain f(x)=(2x^2)/(x^2+2x-35)
|
domain\:f(x)=\frac{2x^{2}}{x^{2}+2x-35}
|
domain y= x/(1-x)
|
domain\:y=\frac{x}{1-x}
|
domain f(x)=-x^2+2x
|
domain\:f(x)=-x^{2}+2x
|
shift f(x)=2cos(3x+(pi)/2)
|
shift\:f(x)=2\cos(3x+\frac{\pi}{2})
|
domain sqrt(x+2)+3
|
domain\:\sqrt{x+2}+3
|
domain (x^2-1)/x
|
domain\:\frac{x^{2}-1}{x}
|
domain (x+3)/2
|
domain\:\frac{x+3}{2}
|
domain (x^2-1)/4
|
domain\:\frac{x^{2}-1}{4}
|
domain x/(x+5)
|
domain\:\frac{x}{x+5}
|
domain f(x)=(x+7)/6
|
domain\:f(x)=\frac{x+7}{6}
|
domain f(x)=(3x)/(x+4)
|
domain\:f(x)=\frac{3x}{x+4}
|
domain f(x)=-2(x+3)^2-6
|
domain\:f(x)=-2(x+3)^{2}-6
|
domain f(x)=(x-1)/(3x-2)
|
domain\:f(x)=\frac{x-1}{3x-2}
|
domain x/(1+x^2)
|
domain\:\frac{x}{1+x^{2}}
|
midpoint (-3,3)(5,1)
|
midpoint\:(-3,3)(5,1)
|
domain f(x)=x^2-5x-6
|
domain\:f(x)=x^{2}-5x-6
|
domain f(x)= 1/(ln(x+sqrt(x)))
|
domain\:f(x)=\frac{1}{\ln(x+\sqrt{x})}
|
domain f(x)=-2+ln(x)
|
domain\:f(x)=-2+\ln(x)
|
domain f(x)=(x-2)/3
|
domain\:f(x)=\frac{x-2}{3}
|
domain f(x)=ln(x^2+4)
|
domain\:f(x)=\ln(x^{2}+4)
|
domain f(x)=(x+1)/(sqrt(x))
|
domain\:f(x)=\frac{x+1}{\sqrt{x}}
|
domain (x+5)/(sqrt(1-\sqrt{x-2))}
|
domain\:\frac{x+5}{\sqrt{1-\sqrt{x-2}}}
|
domain y=ln(x-2)
|
domain\:y=\ln(x-2)
|
domain sqrt(1-4x^2)
|
domain\:\sqrt{1-4x^{2}}
|
domain y= 1/(sqrt(x^2-4))
|
domain\:y=\frac{1}{\sqrt{x^{2}-4}}
|
domain f(x)=(x-2)^2+1
|
domain\:f(x)=(x-2)^{2}+1
|