extreme points of f(x)=(x^2+x-2)/(x^2)
|
extreme\:points\:f(x)=\frac{x^{2}+x-2}{x^{2}}
|
range of f(x)=(x-4)/(3x+5)
|
range\:f(x)=\frac{x-4}{3x+5}
|
shift cos(4x)
|
shift\:\cos(4x)
|
domain of f(x)=sqrt(4-5x)
|
domain\:f(x)=\sqrt{4-5x}
|
range of-16t^2+1700
|
range\:-16t^{2}+1700
|
line (5,0),(1,-1)
|
line\:(5,0),(1,-1)
|
intercepts of (5x+20)/(x^2+x-12)
|
intercepts\:\frac{5x+20}{x^{2}+x-12}
|
domain of f(x)=sqrt(1-x^2)+3
|
domain\:f(x)=\sqrt{1-x^{2}}+3
|
range of y=-sqrt(x+1)-3
|
range\:y=-\sqrt{x+1}-3
|
inverse of y=\sqrt[3]{x}
|
inverse\:y=\sqrt[3]{x}
|
extreme points of f(x)=x^3-2x^2-4x+10
|
extreme\:points\:f(x)=x^{3}-2x^{2}-4x+10
|
domain of f(x)=\sqrt[3]{t-7}
|
domain\:f(x)=\sqrt[3]{t-7}
|
critical points of 1/x
|
critical\:points\:\frac{1}{x}
|
intercepts of f(x)=y^2=x+81
|
intercepts\:f(x)=y^{2}=x+81
|
inverse of f(x)= x/4+5
|
inverse\:f(x)=\frac{x}{4}+5
|
domain of f(x)=x^2-2x-15
|
domain\:f(x)=x^{2}-2x-15
|
symmetry y=2x^2-24x+86
|
symmetry\:y=2x^{2}-24x+86
|
inverse of log_{3}(x+6)-3
|
inverse\:\log_{3}(x+6)-3
|
parity f(x)=\sqrt[9]{7x}
|
parity\:f(x)=\sqrt[9]{7x}
|
critical points of f(x)=x^{(7/2)}-7x^2
|
critical\:points\:f(x)=x^{(\frac{7}{2})}-7x^{2}
|
inverse of f(x)= 1/(sqrt(x))
|
inverse\:f(x)=\frac{1}{\sqrt{x}}
|
range of (x-2)/((x-2)^2)
|
range\:\frac{x-2}{(x-2)^{2}}
|
symmetry y^2-x-1=0
|
symmetry\:y^{2}-x-1=0
|
inverse of f(x)=log_{2}(x-3)-5
|
inverse\:f(x)=\log_{2}(x-3)-5
|
inverse of y=\sqrt[3]{x-5}
|
inverse\:y=\sqrt[3]{x-5}
|
slope intercept of 8x+5y=3
|
slope\:intercept\:8x+5y=3
|
inflection points of f(x)=4x^2e^x
|
inflection\:points\:f(x)=4x^{2}e^{x}
|
range of x/(|x-2|)
|
range\:\frac{x}{|x-2|}
|
domain of (sqrt(x-3))/(x^2-16)
|
domain\:\frac{\sqrt{x-3}}{x^{2}-16}
|
extreme points of f(x)=x^3-27x+1
|
extreme\:points\:f(x)=x^{3}-27x+1
|
perpendicular 2y=x-3(-1,2)
|
perpendicular\:2y=x-3(-1,2)
|
slope of 6x-2y=18
|
slope\:6x-2y=18
|
asymptotes of f(x)= 1/(x-4)-2
|
asymptotes\:f(x)=\frac{1}{x-4}-2
|
domain of f(x)=(10)/(4-x)
|
domain\:f(x)=\frac{10}{4-x}
|
inverse of f(x)=(24)/(x+3)
|
inverse\:f(x)=\frac{24}{x+3}
|
extreme points of f(x)=(-x^2)/(x^2-2x+8)
|
extreme\:points\:f(x)=\frac{-x^{2}}{x^{2}-2x+8}
|
periodicity of f(x)=-cos(4x)
|
periodicity\:f(x)=-\cos(4x)
|
domain of f(x)=4x^2+2
|
domain\:f(x)=4x^{2}+2
|
domain of f(x)=(4x^2-9)/(4x^2-4x-3)
|
domain\:f(x)=\frac{4x^{2}-9}{4x^{2}-4x-3}
|
extreme points of f(x)=x^3-6x^2+13
|
extreme\:points\:f(x)=x^{3}-6x^{2}+13
|
domain of f(x)=(3x)/(x^2-25)
|
domain\:f(x)=\frac{3x}{x^{2}-25}
|
intercepts of f(x)=7x-2y=-2
|
intercepts\:f(x)=7x-2y=-2
|
domain of g(x)=sqrt(4x+48)
|
domain\:g(x)=\sqrt{4x+48}
|
extreme points of x^3-6x^2+9x
|
extreme\:points\:x^{3}-6x^{2}+9x
|
intercepts of f(x)=-x^3+3
|
intercepts\:f(x)=-x^{3}+3
|
inverse of (x+2)^2+1
|
inverse\:(x+2)^{2}+1
|
intercepts of f(x)=(5x)/(x-5)
|
intercepts\:f(x)=\frac{5x}{x-5}
|
inverse of f(x)=(16-5x)/(3x)
|
inverse\:f(x)=\frac{16-5x}{3x}
|
domain of x/(x^2-6x+8)
|
domain\:\frac{x}{x^{2}-6x+8}
|
domain of f(x)= 4/(x^2)
|
domain\:f(x)=\frac{4}{x^{2}}
|
intercepts of f(x)=x^2-2x+1
|
intercepts\:f(x)=x^{2}-2x+1
|
inflection points of-1/2 x^4-6x^3-72x^2
|
inflection\:points\:-\frac{1}{2}x^{4}-6x^{3}-72x^{2}
|
asymptotes of f(x)=(2x^2+8x+8)/(x^3+8)
|
asymptotes\:f(x)=\frac{2x^{2}+8x+8}{x^{3}+8}
|
critical points of f
|
critical\:points\:f
|
domain of f(x)=(x/(x+1))/(x^3)
|
domain\:f(x)=\frac{\frac{x}{x+1}}{x^{3}}
|
inverse of f(x)=ln(2x-1)
|
inverse\:f(x)=\ln(2x-1)
|
range of f(x)=\sqrt[3]{x-9}
|
range\:f(x)=\sqrt[3]{x-9}
|
domain of y=(sqrt(x))/(3x^2+2x-1)
|
domain\:y=\frac{\sqrt{x}}{3x^{2}+2x-1}
|
slope intercept of 6x+15y=-15
|
slope\:intercept\:6x+15y=-15
|
intercepts of f(x)=-x^2+6x-5
|
intercepts\:f(x)=-x^{2}+6x-5
|
critical points of 2x^4-4x^2+6
|
critical\:points\:2x^{4}-4x^{2}+6
|
slope of 2x-5y=10
|
slope\:2x-5y=10
|
inverse of f(x)=3x-14
|
inverse\:f(x)=3x-14
|
domain of f(x)=-5/(2t^{3/2)}
|
domain\:f(x)=-\frac{5}{2t^{\frac{3}{2}}}
|
asymptotes of f(x)=(2x-6)/(x^2-6x+8)
|
asymptotes\:f(x)=\frac{2x-6}{x^{2}-6x+8}
|
inverse of f(x)= 1/(x+3)+2
|
inverse\:f(x)=\frac{1}{x+3}+2
|
critical points of f(x)=(x+5)/(x+3)
|
critical\:points\:f(x)=\frac{x+5}{x+3}
|
parity y=(1/(x+1/3+Ce^{3x)})^{1/3}
|
parity\:y=(\frac{1}{x+\frac{1}{3}+Ce^{3x}})^{\frac{1}{3}}
|
domain of f(x)=\sqrt[3]{2x+10}
|
domain\:f(x)=\sqrt[3]{2x+10}
|
asymptotes of f(x)=(7x)/(x^2-2x-3)
|
asymptotes\:f(x)=\frac{7x}{x^{2}-2x-3}
|
inverse of f(x)=7(x+5)^3-6
|
inverse\:f(x)=7(x+5)^{3}-6
|
range of 2/(x^2-2x-3)
|
range\:\frac{2}{x^{2}-2x-3}
|
range of 3(x-1)^2-2
|
range\:3(x-1)^{2}-2
|
domain of (a-(2a-1)/a)/(\frac{1-a){3a}}
|
domain\:\frac{a-\frac{2a-1}{a}}{\frac{1-a}{3a}}
|
inflection points of (x-x^2)/((x+1)^2)
|
inflection\:points\:\frac{x-x^{2}}{(x+1)^{2}}
|
inverse of y=sqrt(x+2)+3
|
inverse\:y=\sqrt{x+2}+3
|
midpoint (2,0)(0,-2)
|
midpoint\:(2,0)(0,-2)
|
shift 4sin(3pi-2pi x)-7pi
|
shift\:4\sin(3\pi-2\pi\:x)-7\pi
|
extreme points of f(x)=3x^3-81x
|
extreme\:points\:f(x)=3x^{3}-81x
|
intercepts of f(x)= 3/(x-2)
|
intercepts\:f(x)=\frac{3}{x-2}
|
domain of f(x)=(3x-1)/(sqrt(x^2+1))
|
domain\:f(x)=\frac{3x-1}{\sqrt{x^{2}+1}}
|
parity f(x)=-4x^3-2x
|
parity\:f(x)=-4x^{3}-2x
|
inflection points of xsqrt(x+1)
|
inflection\:points\:x\sqrt{x+1}
|
inverse of f(x)=11cos(2x)+5
|
inverse\:f(x)=11\cos(2x)+5
|
inflection points of (x-1)/((x+3)(x-2))
|
inflection\:points\:\frac{x-1}{(x+3)(x-2)}
|
x^2+2
|
x^{2}+2
|
midpoint (1,5)(7,-1)
|
midpoint\:(1,5)(7,-1)
|
domain of \sqrt[3]{x}+2
|
domain\:\sqrt[3]{x}+2
|
range of 3x^3+7x-3
|
range\:3x^{3}+7x-3
|
periodicity of f(x)=6sin(3x-pi)
|
periodicity\:f(x)=6\sin(3x-\pi)
|
extreme points of f(x)=(10-4e^{-x})
|
extreme\:points\:f(x)=(10-4e^{-x})
|
shift 10+8csc((pi)/3 x+(pi)/4)
|
shift\:10+8\csc(\frac{\pi}{3}x+\frac{\pi}{4})
|
domain of 1/(x-8)
|
domain\:\frac{1}{x-8}
|
parity f(x)=x^3-x
|
parity\:f(x)=x^{3}-x
|
domain of 4/(3-x)
|
domain\:\frac{4}{3-x}
|
domain of f(x)=sqrt(cos(x))
|
domain\:f(x)=\sqrt{\cos(x)}
|
inverse of-6(x-2)
|
inverse\:-6(x-2)
|
inverse of f(x)=-1/3 x+3
|
inverse\:f(x)=-\frac{1}{3}x+3
|
asymptotes of f(x)=(6x-1)/(3x-6)
|
asymptotes\:f(x)=\frac{6x-1}{3x-6}
|
asymptotes of f(x)=log_{5}(x+3)
|
asymptotes\:f(x)=\log_{5}(x+3)
|