range of e^{(x-2)/4}
|
range\:e^{\frac{x-2}{4}}
|
inverse of f(x)=sqrt(5x+9)
|
inverse\:f(x)=\sqrt{5x+9}
|
symmetry 1(x+1)^2-9
|
symmetry\:1(x+1)^{2}-9
|
domain of f(x)= 9/(\frac{x){x+9}}
|
domain\:f(x)=\frac{9}{\frac{x}{x+9}}
|
critical points of f(x)=42x-3x^2
|
critical\:points\:f(x)=42x-3x^{2}
|
asymptotes of f(x)=(x^2-7)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}-7}{x-3}
|
domain of 4/(x+3)
|
domain\:\frac{4}{x+3}
|
critical points of-cos(x)
|
critical\:points\:-\cos(x)
|
domain of f(x)=((5-x))/((x^2-3x))
|
domain\:f(x)=\frac{(5-x)}{(x^{2}-3x)}
|
inflection points of s^3
|
inflection\:points\:s^{3}
|
domain of f(x)=sqrt(3+2x)
|
domain\:f(x)=\sqrt{3+2x}
|
range of f(x)=(7x+8)/(4x-7)
|
range\:f(x)=\frac{7x+8}{4x-7}
|
asymptotes of f(x)=(x^2+2x-3)/(x^2-6x+5)
|
asymptotes\:f(x)=\frac{x^{2}+2x-3}{x^{2}-6x+5}
|
midpoint (0,8)(8,-6)
|
midpoint\:(0,8)(8,-6)
|
inflection points of f(x)=sin^2(x)
|
inflection\:points\:f(x)=\sin^{2}(x)
|
domain of f(x)=(x-6)/x
|
domain\:f(x)=\frac{x-6}{x}
|
inverse of f(x)=e^{3x+7}
|
inverse\:f(x)=e^{3x+7}
|
asymptotes of f(x)=((8e^x))/(e^x-2)
|
asymptotes\:f(x)=\frac{(8e^{x})}{e^{x}-2}
|
inverse of f(x)= 1/5 x+1
|
inverse\:f(x)=\frac{1}{5}x+1
|
slope of 2x+3
|
slope\:2x+3
|
asymptotes of (x^2+4x-5)/(x-1)
|
asymptotes\:\frac{x^{2}+4x-5}{x-1}
|
domain of (x^2-9)/(x^2+4x-21)
|
domain\:\frac{x^{2}-9}{x^{2}+4x-21}
|
domain of f(x)=(sqrt(x-2))/(sqrt(x))
|
domain\:f(x)=\frac{\sqrt{x-2}}{\sqrt{x}}
|
extreme points of f(x)=-x^4+4x^2+3
|
extreme\:points\:f(x)=-x^{4}+4x^{2}+3
|
inverse of f(x)=10(x+7)
|
inverse\:f(x)=10(x+7)
|
line (-3,2),(7,-3)
|
line\:(-3,2),(7,-3)
|
slope intercept of y=-2x-1
|
slope\:intercept\:y=-2x-1
|
domain of (x+2)/6
|
domain\:\frac{x+2}{6}
|
range of f(x)=x+4,x< 1
|
range\:f(x)=x+4,x\lt\:1
|
perpendicular y=8,\at (3,4)
|
perpendicular\:y=8,\at\:(3,4)
|
domain of f(x)=2^{x-5}
|
domain\:f(x)=2^{x-5}
|
shift y=-4sin(6x+(pi)/2)
|
shift\:y=-4\sin(6x+\frac{\pi}{2})
|
asymptotes of f(x)= x/(x^2+5)
|
asymptotes\:f(x)=\frac{x}{x^{2}+5}
|
intercepts of f(x)=-x^2+1
|
intercepts\:f(x)=-x^{2}+1
|
f(x)=sqrt(-x)
|
f(x)=\sqrt{-x}
|
intercepts of (x^2-2x-15)/(2x^2+7x+3)
|
intercepts\:\frac{x^{2}-2x-15}{2x^{2}+7x+3}
|
amplitude of sin(x-(pi)/4)
|
amplitude\:\sin(x-\frac{\pi}{4})
|
inverse of f(x)=9x^3-7
|
inverse\:f(x)=9x^{3}-7
|
intercepts of f(x)=-2(x-4)^2+5
|
intercepts\:f(x)=-2(x-4)^{2}+5
|
midpoint (-1,-4)(-3,-7)
|
midpoint\:(-1,-4)(-3,-7)
|
domain of (8x)/(7x-3)
|
domain\:\frac{8x}{7x-3}
|
line y-3x=5
|
line\:y-3x=5
|
domain of f(x)=(sqrt(x))/(3x^2+2x-1)
|
domain\:f(x)=\frac{\sqrt{x}}{3x^{2}+2x-1}
|
periodicity of f(x)=y=3sec(x)+5
|
periodicity\:f(x)=y=3\sec(x)+5
|
inverse of 3+log_{4}(x+2)
|
inverse\:3+\log_{4}(x+2)
|
critical points of 3x+(27)/x
|
critical\:points\:3x+\frac{27}{x}
|
line m=-7/2 ,\at (-4,-5)
|
line\:m=-\frac{7}{2},\at\:(-4,-5)
|
monotone intervals f(x)=x^4-25x^2
|
monotone\:intervals\:f(x)=x^{4}-25x^{2}
|
shift-cos(x)
|
shift\:-\cos(x)
|
amplitude of f(t)=3cos(4t-(3pi)/4)+2
|
amplitude\:f(t)=3\cos(4t-\frac{3\pi}{4})+2
|
domain of (x-1)/(x+1)
|
domain\:\frac{x-1}{x+1}
|
domain of f(x)= 1/(x-1)+1/(x-2)
|
domain\:f(x)=\frac{1}{x-1}+\frac{1}{x-2}
|
domain of (x-1)/((x-6)(x+8))
|
domain\:\frac{x-1}{(x-6)(x+8)}
|
symmetry x^2+6x
|
symmetry\:x^{2}+6x
|
parity f(x)=(-5x-x^3-2)/(x^3-3x^2+5)
|
parity\:f(x)=\frac{-5x-x^{3}-2}{x^{3}-3x^{2}+5}
|
asymptotes of (x+4)/(x^2+5x+4)
|
asymptotes\:\frac{x+4}{x^{2}+5x+4}
|
domain of f(x)=(sqrt(5+x))/(-4+2x)
|
domain\:f(x)=\frac{\sqrt{5+x}}{-4+2x}
|
domain of g(x)=-x^2+4
|
domain\:g(x)=-x^{2}+4
|
extreme points of f(x)=((x^3))/(x^2-1)
|
extreme\:points\:f(x)=\frac{(x^{3})}{x^{2}-1}
|
shift-5sin(3x+(pi)/2)
|
shift\:-5\sin(3x+\frac{\pi}{2})
|
domain of (6x)/(x+5)
|
domain\:\frac{6x}{x+5}
|
domain of f(x)=((x+8))/(x^2-1)
|
domain\:f(x)=\frac{(x+8)}{x^{2}-1}
|
domain of f(x)=(x^2)/(x-8)
|
domain\:f(x)=\frac{x^{2}}{x-8}
|
inverse of f(x)=2x^{1/3}
|
inverse\:f(x)=2x^{\frac{1}{3}}
|
inflection points of f(x)=-x^4+18x^2
|
inflection\:points\:f(x)=-x^{4}+18x^{2}
|
extreme points of f(x)=-x^3+6x^2-18
|
extreme\:points\:f(x)=-x^{3}+6x^{2}-18
|
inverse of f(x)=7x^2+4
|
inverse\:f(x)=7x^{2}+4
|
inverse of f(x)=(x-6)^2
|
inverse\:f(x)=(x-6)^{2}
|
inverse of f(x)=7x^{3/5}
|
inverse\:f(x)=7x^{\frac{3}{5}}
|
inverse of 9-7x
|
inverse\:9-7x
|
inverse of f(x)=-(x+2)^2-7
|
inverse\:f(x)=-(x+2)^{2}-7
|
domain of f(x)= 6/(sqrt(x^2-4))
|
domain\:f(x)=\frac{6}{\sqrt{x^{2}-4}}
|
asymptotes of f(x)=(4x+13)/(-3x)
|
asymptotes\:f(x)=\frac{4x+13}{-3x}
|
range of (2x^4-x^2+1)/(x^2-4)
|
range\:\frac{2x^{4}-x^{2}+1}{x^{2}-4}
|
range of 14
|
range\:14
|
intercepts of log_{5}(3-x)+2
|
intercepts\:\log_{5}(3-x)+2
|
critical points of f(x)= x/(x^2+4)
|
critical\:points\:f(x)=\frac{x}{x^{2}+4}
|
range of (7x)/(8x-3)
|
range\:\frac{7x}{8x-3}
|
distance (-2,4),(5,4)
|
distance\:(-2,4),(5,4)
|
domain of (x+2)/(x-6)
|
domain\:\frac{x+2}{x-6}
|
range of f(x)=(x^2+x-12)/(x-3)
|
range\:f(x)=\frac{x^{2}+x-12}{x-3}
|
inverse of f(x)=10-x^2
|
inverse\:f(x)=10-x^{2}
|
monotone intervals (4x^3)/((x-4)^2(x+2))
|
monotone\:intervals\:\frac{4x^{3}}{(x-4)^{2}(x+2)}
|
slope of-3x+5y=2x+3y
|
slope\:-3x+5y=2x+3y
|
asymptotes of f(x)=(3x)/(x-4)
|
asymptotes\:f(x)=\frac{3x}{x-4}
|
inverse of f(x)=(x^3-1)^5
|
inverse\:f(x)=(x^{3}-1)^{5}
|
inverse of f(x)=x^7-4
|
inverse\:f(x)=x^{7}-4
|
asymptotes of f(x)=(2x-3)/(3x+4)
|
asymptotes\:f(x)=\frac{2x-3}{3x+4}
|
asymptotes of y=(7x^2+1)/(x^2+7)
|
asymptotes\:y=\frac{7x^{2}+1}{x^{2}+7}
|
y=xe^x
|
y=xe^{x}
|
domain of f(x)=(3x-4)/(7-x)
|
domain\:f(x)=\frac{3x-4}{7-x}
|
domain of sin^{-1}(t)
|
domain\:\sin^{-1}(t)
|
critical points of 48x-4x^2
|
critical\:points\:48x-4x^{2}
|
domain of f(x)= 9/(5/x-1)
|
domain\:f(x)=\frac{9}{\frac{5}{x}-1}
|
domain of (2x^2-4x)/(x^2+4x+4)
|
domain\:\frac{2x^{2}-4x}{x^{2}+4x+4}
|
line (-5,-10)(-1,5)
|
line\:(-5,-10)(-1,5)
|
parity f(x)=x^5+x^3
|
parity\:f(x)=x^{5}+x^{3}
|
inverse of f(x)=x^2-6x
|
inverse\:f(x)=x^{2}-6x
|
inverse of f(x)= 1/(sqrt(x^2+6))
|
inverse\:f(x)=\frac{1}{\sqrt{x^{2}+6}}
|
inverse of f(x)=\sqrt[4]{x-2}
|
inverse\:f(x)=\sqrt[4]{x-2}
|