domain of f(x)= x/(sqrt(x^2+x-6))
|
domain\:f(x)=\frac{x}{\sqrt{x^{2}+x-6}}
|
asymptotes of 5/(x^2-5x)
|
asymptotes\:\frac{5}{x^{2}-5x}
|
midpoint (2,5)(1,7)
|
midpoint\:(2,5)(1,7)
|
x/(x^2+1)
|
\frac{x}{x^{2}+1}
|
shift f(x)=-3cos(-2x+(pi)/2)
|
shift\:f(x)=-3\cos(-2x+\frac{\pi}{2})
|
range of-sqrt(-x^2-4x+5)+3
|
range\:-\sqrt{-x^{2}-4x+5}+3
|
inverse of f(x)= 2/3 x-1
|
inverse\:f(x)=\frac{2}{3}x-1
|
domain of e^{x^2-6x+8}
|
domain\:e^{x^{2}-6x+8}
|
midpoint (-8,-10)(0,-3)
|
midpoint\:(-8,-10)(0,-3)
|
asymptotes of f(x)=(x^2+3x+4)/(4(x-1))
|
asymptotes\:f(x)=\frac{x^{2}+3x+4}{4(x-1)}
|
line m=-5/2 ,\at (1,3)
|
line\:m=-\frac{5}{2},\at\:(1,3)
|
parity X^3
|
parity\:X^{3}
|
domain of f(x)=sqrt(21-7x)
|
domain\:f(x)=\sqrt{21-7x}
|
line m=-1/5 p=(-8,-6)
|
line\:m=-\frac{1}{5}p=(-8,-6)
|
inflection points of x/(9x^2-81)
|
inflection\:points\:\frac{x}{9x^{2}-81}
|
intercepts of y=x^2-2x-3
|
intercepts\:y=x^{2}-2x-3
|
symmetry x=-(y+4)^2-2
|
symmetry\:x=-(y+4)^{2}-2
|
range of y=sqrt(2x+3)
|
range\:y=\sqrt{2x+3}
|
domain of f(x)=5sqrt(x^2-9)
|
domain\:f(x)=5\sqrt{x^{2}-9}
|
intercepts of f(x)=4-(8-sqrt(x+4))^2
|
intercepts\:f(x)=4-(8-\sqrt{x+4})^{2}
|
intercepts of f(x)=-2(x+2)^2+5
|
intercepts\:f(x)=-2(x+2)^{2}+5
|
midpoint (6,5)(-2,6)
|
midpoint\:(6,5)(-2,6)
|
range of f(x)=-x^2+4x-3
|
range\:f(x)=-x^{2}+4x-3
|
slope of 5x-2y+4
|
slope\:5x-2y+4
|
critical points of x^2-18x-4
|
critical\:points\:x^{2}-18x-4
|
inverse of f(x)=(-x+9)/(3+4x)
|
inverse\:f(x)=\frac{-x+9}{3+4x}
|
distance (6,-3)(8,8)
|
distance\:(6,-3)(8,8)
|
intercepts of f(x)=x^3+2x^2-9x-18
|
intercepts\:f(x)=x^{3}+2x^{2}-9x-18
|
inverse of f(x)=3(x-2)
|
inverse\:f(x)=3(x-2)
|
inverse of f(x)=-4^{(x-3)}+3
|
inverse\:f(x)=-4^{(x-3)}+3
|
slope of-7x-5y=5
|
slope\:-7x-5y=5
|
inverse of f(x)=(5-x)/(3x+2)
|
inverse\:f(x)=\frac{5-x}{3x+2}
|
domain of 1/(x^2-10x+25)
|
domain\:\frac{1}{x^{2}-10x+25}
|
intercepts of f(x)=2x-1
|
intercepts\:f(x)=2x-1
|
domain of f(x)= 3/(x+4)+x/(x+4)
|
domain\:f(x)=\frac{3}{x+4}+\frac{x}{x+4}
|
domain of x^3-3x^2
|
domain\:x^{3}-3x^{2}
|
domain of f(x)=sqrt(x^2-3x+2)
|
domain\:f(x)=\sqrt{x^{2}-3x+2}
|
domain of x^{2/3}
|
domain\:x^{\frac{2}{3}}
|
domain of (X^2+6)/(X^2-2X+15)
|
domain\:\frac{X^{2}+6}{X^{2}-2X+15}
|
inverse of 3log_{2}(x)
|
inverse\:3\log_{2}(x)
|
intercepts of f(x)=-0.5x^2+7x-4
|
intercepts\:f(x)=-0.5x^{2}+7x-4
|
domain of f(x)=-x^2+3
|
domain\:f(x)=-x^{2}+3
|
intercepts of f(x)=x^2-4x+3
|
intercepts\:f(x)=x^{2}-4x+3
|
e^{1/x}
|
e^{\frac{1}{x}}
|
range of-3sqrt(2x-4)+1
|
range\:-3\sqrt{2x-4}+1
|
inflection points of 0.2804+0.2209ln(x)
|
inflection\:points\:0.2804+0.2209\ln(x)
|
parity csc(2x)+cot(2x)
|
parity\:\csc(2x)+\cot(2x)
|
domain of f(x)=sqrt(x^2+4x-21)
|
domain\:f(x)=\sqrt{x^{2}+4x-21}
|
domain of f(x)=(x-5)/(2x+4)
|
domain\:f(x)=\frac{x-5}{2x+4}
|
parity f(x)=x^2
|
parity\:f(x)=x^{2}
|
domain of f(x)=sqrt(x+20)-1
|
domain\:f(x)=\sqrt{x+20}-1
|
inverse of 7 5/8
|
inverse\:7\frac{5}{8}
|
asymptotes of (2x^2)/(x^2-3x-10)
|
asymptotes\:\frac{2x^{2}}{x^{2}-3x-10}
|
critical points of (x^2-3)/(x^2-7)
|
critical\:points\:\frac{x^{2}-3}{x^{2}-7}
|
parity arccsc(1/4)x
|
parity\:\arccsc(\frac{1}{4})x
|
asymptotes of f(x)=2cos^{-1}(x+1)+(pi)/2
|
asymptotes\:f(x)=2\cos^{-1}(x+1)+\frac{\pi}{2}
|
range of 1/(sqrt(1-x^2))
|
range\:\frac{1}{\sqrt{1-x^{2}}}
|
parity (2x^2-12x+16)/(x^2-x-12)
|
parity\:\frac{2x^{2}-12x+16}{x^{2}-x-12}
|
domain of (x-3)^2+7
|
domain\:(x-3)^{2}+7
|
inflection points of (x^3)/3-3x^2-7x
|
inflection\:points\:\frac{x^{3}}{3}-3x^{2}-7x
|
parallel 9x-6y=-6
|
parallel\:9x-6y=-6
|
inverse of f(x)=(4+\sqrt[3]{4x})/2
|
inverse\:f(x)=\frac{4+\sqrt[3]{4x}}{2}
|
intercepts of (x-5)/(x+6)
|
intercepts\:\frac{x-5}{x+6}
|
domain of f(x)=x*sin(1/(x^2))
|
domain\:f(x)=x\cdot\:\sin(\frac{1}{x^{2}})
|
domain of f(x)=sqrt(-4x+32)
|
domain\:f(x)=\sqrt{-4x+32}
|
line (750,2.5)(625,3)
|
line\:(750,2.5)(625,3)
|
range of f(x)=10-x^2
|
range\:f(x)=10-x^{2}
|
domain of ln(e^x-3)
|
domain\:\ln(e^{x}-3)
|
inflection points of (x-2)^{(2)}
|
inflection\:points\:(x-2)^{(2)}
|
domain of f(x)=(2(x+2))/x
|
domain\:f(x)=\frac{2(x+2)}{x}
|
midpoint (8,9)(4,-3)
|
midpoint\:(8,9)(4,-3)
|
parity f(x)=6x^5-4x
|
parity\:f(x)=6x^{5}-4x
|
domain of f(x)=6x+13
|
domain\:f(x)=6x+13
|
inflection points of (x^3)/((x-2)^2)
|
inflection\:points\:\frac{x^{3}}{(x-2)^{2}}
|
inverse of f(x)= x/5+1
|
inverse\:f(x)=\frac{x}{5}+1
|
inverse of f(x)=((x+15))/(x-13)
|
inverse\:f(x)=\frac{(x+15)}{x-13}
|
slope intercept of x+2y=0
|
slope\:intercept\:x+2y=0
|
intercepts of (2x+6)/(x^2-2x-3)
|
intercepts\:\frac{2x+6}{x^{2}-2x-3}
|
extreme points of x^2-4x+7
|
extreme\:points\:x^{2}-4x+7
|
5^x
|
5^{x}
|
line (-10,3)(-8,-8)
|
line\:(-10,3)(-8,-8)
|
inverse of cos(2x)
|
inverse\:\cos(2x)
|
tan(θ)
|
\tan(θ)
|
f(x)=e^{1/x}
|
f(x)=e^{\frac{1}{x}}
|
slope of y=-7x+5
|
slope\:y=-7x+5
|
domain of f(x)=sqrt(6-\sqrt{6-x)}
|
domain\:f(x)=\sqrt{6-\sqrt{6-x}}
|
inverse of f(x)=2x^5+1
|
inverse\:f(x)=2x^{5}+1
|
domain of x^3+x^2-9x-9
|
domain\:x^{3}+x^{2}-9x-9
|
inflection points of f(x)= 2/(x+5)
|
inflection\:points\:f(x)=\frac{2}{x+5}
|
inflection points of (x^2+1)(x-1)
|
inflection\:points\:(x^{2}+1)(x-1)
|
symmetry f(x)=x^2-4x
|
symmetry\:f(x)=x^{2}-4x
|
intercepts of f(x)=(x+2)^2-4
|
intercepts\:f(x)=(x+2)^{2}-4
|
inflection points of f(x)=-x^3+27x-54
|
inflection\:points\:f(x)=-x^{3}+27x-54
|
range of 5/(x^2-4)
|
range\:\frac{5}{x^{2}-4}
|
slope intercept of y=-75x+6
|
slope\:intercept\:y=-75x+6
|
symmetry f(x)=3x^2+4x-5
|
symmetry\:f(x)=3x^{2}+4x-5
|
shift y=3sin(2x-pi)
|
shift\:y=3\sin(2x-\pi)
|
slope intercept of x-y=5
|
slope\:intercept\:x-y=5
|
intercepts of f(x)=(5x-1)/(x^2+x-72)
|
intercepts\:f(x)=\frac{5x-1}{x^{2}+x-72}
|
domain of (x^2+3x+2)/(-3x-12)
|
domain\:\frac{x^{2}+3x+2}{-3x-12}
|