domain of f(x)= x/(x^2+1)
|
domain\:f(x)=\frac{x}{x^{2}+1}
|
distance (0,0)(-2,4)
|
distance\:(0,0)(-2,4)
|
asymptotes of f(x)=(x^2-4x+3)/(-x+3)
|
asymptotes\:f(x)=\frac{x^{2}-4x+3}{-x+3}
|
domain of f(x)=5-4t
|
domain\:f(x)=5-4t
|
domain of arccos(x^2)+3/2 x
|
domain\:\arccos(x^{2})+\frac{3}{2}x
|
inflection points of f(x)=x^2-5x+6
|
inflection\:points\:f(x)=x^{2}-5x+6
|
midpoint (5,0)(0,-5)
|
midpoint\:(5,0)(0,-5)
|
intercepts of f(x)=3x-4y=9
|
intercepts\:f(x)=3x-4y=9
|
extreme points of f(x)=2x^3-24x
|
extreme\:points\:f(x)=2x^{3}-24x
|
domain of 1/(\frac{x+1){x-2}-3}
|
domain\:\frac{1}{\frac{x+1}{x-2}-3}
|
extreme points of f(x)=3x^3+8
|
extreme\:points\:f(x)=3x^{3}+8
|
shift f(x)=2sin(pi x+4)-2
|
shift\:f(x)=2\sin(\pi\:x+4)-2
|
domain of sqrt(x-4)+5
|
domain\:\sqrt{x-4}+5
|
perpendicular y= 1/2 x-1\land (-6,2)
|
perpendicular\:y=\frac{1}{2}x-1\land\:(-6,2)
|
slope intercept of 4x+3y=24
|
slope\:intercept\:4x+3y=24
|
shift f(x)=cos(2(x-(pi)/2))
|
shift\:f(x)=\cos(2(x-\frac{\pi}{2}))
|
inverse of f(x)=sin(5x+2)
|
inverse\:f(x)=\sin(5x+2)
|
domain of x/(x-6)
|
domain\:\frac{x}{x-6}
|
inverse of f(x)=(x+5)/(x+6)
|
inverse\:f(x)=\frac{x+5}{x+6}
|
domain of f(x)=(6x)/(x^2-25)
|
domain\:f(x)=\frac{6x}{x^{2}-25}
|
range of f(x)=x+1/x
|
range\:f(x)=x+\frac{1}{x}
|
midpoint (2,3)(-7,-8)
|
midpoint\:(2,3)(-7,-8)
|
slope of f(x)= 4/5 x-5
|
slope\:f(x)=\frac{4}{5}x-5
|
domain of (1-3t)/(2+t)
|
domain\:\frac{1-3t}{2+t}
|
inverse of f(x)=log_{10}(x+4)
|
inverse\:f(x)=\log_{10}(x+4)
|
domain of f(x)=2x^2+3x-9
|
domain\:f(x)=2x^{2}+3x-9
|
domain of f(x)=sqrt(x-20)
|
domain\:f(x)=\sqrt{x-20}
|
domain of g(x)=(5x+1)/(x^2-16x+63)
|
domain\:g(x)=\frac{5x+1}{x^{2}-16x+63}
|
domain of 4/(-x-6)
|
domain\:\frac{4}{-x-6}
|
domain of (-1/(2sqrt(9-x)))
|
domain\:(-\frac{1}{2\sqrt{9-x}})
|
parity 2x^3+x
|
parity\:2x^{3}+x
|
inverse of (4x-1)/(2x+3)
|
inverse\:\frac{4x-1}{2x+3}
|
domain of f(x)=sqrt(x)-sqrt(2-x)
|
domain\:f(x)=\sqrt{x}-\sqrt{2-x}
|
distance (2,1)(2,-2)
|
distance\:(2,1)(2,-2)
|
inverse of f(x)=y=-3x
|
inverse\:f(x)=y=-3x
|
parity f(x)=3|x|
|
parity\:f(x)=3|x|
|
domain of g(x)=-1/(2sqrt(3-x))
|
domain\:g(x)=-\frac{1}{2\sqrt{3-x}}
|
slope of-3x+4y=10
|
slope\:-3x+4y=10
|
intercepts of f(x)=x-y=1
|
intercepts\:f(x)=x-y=1
|
inverse of f(x)=x^2+6
|
inverse\:f(x)=x^{2}+6
|
slope intercept of (6,1)2
|
slope\:intercept\:(6,1)2
|
domain of y= 7/(3+e^x)
|
domain\:y=\frac{7}{3+e^{x}}
|
domain of e^x-3
|
domain\:e^{x}-3
|
intercepts of log_{3}(x-1)+2
|
intercepts\:\log_{3}(x-1)+2
|
inverse of (-3-4r)/(2+3r)
|
inverse\:\frac{-3-4r}{2+3r}
|
critical points of f(x)=-5+4x-x^3
|
critical\:points\:f(x)=-5+4x-x^{3}
|
intercepts of f(x)=4x+y=8
|
intercepts\:f(x)=4x+y=8
|
parallel 3x-y=-2
|
parallel\:3x-y=-2
|
perpendicular (6,2)\land x=-2
|
perpendicular\:(6,2)\land\:x=-2
|
inverse of f(x)=3\sqrt[3]{x+1}
|
inverse\:f(x)=3\sqrt[3]{x+1}
|
extreme points of f(x)=(x-1)^{2\div 3}
|
extreme\:points\:f(x)=(x-1)^{2\div\:3}
|
inverse of f(x)=(2x-3)/(x-1)
|
inverse\:f(x)=\frac{2x-3}{x-1}
|
range of sqrt((3x+8)/x)
|
range\:\sqrt{\frac{3x+8}{x}}
|
periodicity of f(x)= 1/2 sin(x-(pi)/2)
|
periodicity\:f(x)=\frac{1}{2}\sin(x-\frac{\pi}{2})
|
domain of-3/2+(27)/(2(-4x+9))
|
domain\:-\frac{3}{2}+\frac{27}{2(-4x+9)}
|
inverse of 5^x+3
|
inverse\:5^{x}+3
|
inverse of f(x)=((x+3))/(x+7)
|
inverse\:f(x)=\frac{(x+3)}{x+7}
|
inverse of f(x)=(x+3)/(x+1)
|
inverse\:f(x)=\frac{x+3}{x+1}
|
line (n+10>= 15\lor 4n-5<-1,)(,)
|
line\:(n+10\ge\:15\lor\:4n-5\lt\:-1,)(,)
|
domain of f(x)=(x-7)/(x^3+2x)
|
domain\:f(x)=\frac{x-7}{x^{3}+2x}
|
inflection points of f(x)=x^4-4x^3+1
|
inflection\:points\:f(x)=x^{4}-4x^{3}+1
|
domain of f(x)= 4/((x+1)^2-1)
|
domain\:f(x)=\frac{4}{(x+1)^{2}-1}
|
critical points of f(x)=x^3-3x
|
critical\:points\:f(x)=x^{3}-3x
|
domain of f(x)=(x-1)/(x^2+1)
|
domain\:f(x)=\frac{x-1}{x^{2}+1}
|
asymptotes of f(x)=(x^2-5x+6)/(4x+4)
|
asymptotes\:f(x)=\frac{x^{2}-5x+6}{4x+4}
|
domain of f(x)=(9x)/(x(x^2-36))
|
domain\:f(x)=\frac{9x}{x(x^{2}-36)}
|
range of f(x)=sqrt(1-2x)
|
range\:f(x)=\sqrt{1-2x}
|
domain of f(4)
|
domain\:f(4)
|
asymptotes of y=(2x^2+10x+12)/(x^2+3x+2)
|
asymptotes\:y=\frac{2x^{2}+10x+12}{x^{2}+3x+2}
|
domain of f(x)=e^{-5t}
|
domain\:f(x)=e^{-5t}
|
parallel 3x-y=1,\at (3,8)
|
parallel\:3x-y=1,\at\:(3,8)
|
intercepts of f(x)=(x-2)(x+3)
|
intercepts\:f(x)=(x-2)(x+3)
|
asymptotes of-(4x)/(16-x^2)
|
asymptotes\:-\frac{4x}{16-x^{2}}
|
inflection points of x-(108)/(x^2)
|
inflection\:points\:x-\frac{108}{x^{2}}
|
shift f(x)=sin(x-(pi)/2)+2
|
shift\:f(x)=\sin(x-\frac{\pi}{2})+2
|
intercepts of f(x)=-4x^2-8x+3
|
intercepts\:f(x)=-4x^{2}-8x+3
|
domain of sqrt((x-6)/(x-3))
|
domain\:\sqrt{\frac{x-6}{x-3}}
|
inverse of y=x^2-7
|
inverse\:y=x^{2}-7
|
domain of (x-7)/4
|
domain\:\frac{x-7}{4}
|
line m=1.1,\at (3,8.3)
|
line\:m=1.1,\at\:(3,8.3)
|
inverse of sqrt(4+x)
|
inverse\:\sqrt{4+x}
|
perpendicular (9,-2),9
|
perpendicular\:(9,-2),9
|
domain of 14
|
domain\:14
|
critical points of f(x)=x^4-2x^2
|
critical\:points\:f(x)=x^{4}-2x^{2}
|
asymptotes of f(x)=(5x)/(x-1)
|
asymptotes\:f(x)=\frac{5x}{x-1}
|
x^2+x+1
|
x^{2}+x+1
|
range of 5x-9
|
range\:5x-9
|
inverse of f(x)=8-2x^3
|
inverse\:f(x)=8-2x^{3}
|
inverse of f(x)= 1/(2x+4)
|
inverse\:f(x)=\frac{1}{2x+4}
|
inverse of ((e^x))/(1+9e^x)
|
inverse\:\frac{(e^{x})}{1+9e^{x}}
|
domain of f(x)=sqrt(16-3x)
|
domain\:f(x)=\sqrt{16-3x}
|
inverse of f(x)=(x-7)^3
|
inverse\:f(x)=(x-7)^{3}
|
inverse of f(x)=3x=2
|
inverse\:f(x)=3x=2
|
inverse of f(x)=-19
|
inverse\:f(x)=-19
|
intercepts of f(x)=3sqrt(1+16x^2)-12
|
intercepts\:f(x)=3\sqrt{1+16x^{2}}-12
|
range of y=ln(x^2-4)
|
range\:y=\ln(x^{2}-4)
|
midpoint (-8,3)(-5,-2)
|
midpoint\:(-8,3)(-5,-2)
|
perpendicular 3x+y=4,\at (7,8)
|
perpendicular\:3x+y=4,\at\:(7,8)
|
range of f(x)=2^x-1
|
range\:f(x)=2^{x}-1
|
inverse of f(x)= 1/5 x+4/15
|
inverse\:f(x)=\frac{1}{5}x+\frac{4}{15}
|