domain of (6x)/(x-8)-7/(8-x)
|
domain\:\frac{6x}{x-8}-\frac{7}{8-x}
|
domain of sqrt(2x+2)
|
domain\:\sqrt{2x+2}
|
range of f(x)=3x^2-30x-9
|
range\:f(x)=3x^{2}-30x-9
|
intercepts of f(x)=2x-4y=-1
|
intercepts\:f(x)=2x-4y=-1
|
inverse of f(x)= x/((x+1))
|
inverse\:f(x)=\frac{x}{(x+1)}
|
range of-log_{2}(x+2)
|
range\:-\log_{2}(x+2)
|
slope of x+3y=9
|
slope\:x+3y=9
|
extreme points of-x^3-12x
|
extreme\:points\:-x^{3}-12x
|
intercepts of x^3+6x^2-32
|
intercepts\:x^{3}+6x^{2}-32
|
midpoint (40,5)(60,4)
|
midpoint\:(40,5)(60,4)
|
line m=2,\at (-4,3)
|
line\:m=2,\at\:(-4,3)
|
domain of f(x)= 1/(x^2+x-6)
|
domain\:f(x)=\frac{1}{x^{2}+x-6}
|
asymptotes of f(x)=(6x^2)/(x^2-1)
|
asymptotes\:f(x)=\frac{6x^{2}}{x^{2}-1}
|
asymptotes of f(x)= 4/(3x-2)-1
|
asymptotes\:f(x)=\frac{4}{3x-2}-1
|
domain of y=x^2-12x+35
|
domain\:y=x^{2}-12x+35
|
inflection points of f(x)=x^4-3x^3
|
inflection\:points\:f(x)=x^{4}-3x^{3}
|
domain of f(x)=-x^3+8x^2-15x
|
domain\:f(x)=-x^{3}+8x^{2}-15x
|
line (-12,-1)(-11,-7)
|
line\:(-12,-1)(-11,-7)
|
inverse of (x+3)^3
|
inverse\:(x+3)^{3}
|
domain of \sqrt[8]{15-4x}
|
domain\:\sqrt[8]{15-4x}
|
perpendicular 6x=3y-9
|
perpendicular\:6x=3y-9
|
slope intercept of-5y=-x+20
|
slope\:intercept\:-5y=-x+20
|
domain of f(x)=x^2-2x-1
|
domain\:f(x)=x^{2}-2x-1
|
shift-5sin(2x+6)-1
|
shift\:-5\sin(2x+6)-1
|
monotone intervals 1/(x^2-1)
|
monotone\:intervals\:\frac{1}{x^{2}-1}
|
asymptotes of f(x)=((x+1))/((x-2))
|
asymptotes\:f(x)=\frac{(x+1)}{(x-2)}
|
domain of =(x-1)/(-2x+3)
|
domain\:=\frac{x-1}{-2x+3}
|
domain of 5/x-4
|
domain\:\frac{5}{x}-4
|
asymptotes of y=((x+3))/((x+4))
|
asymptotes\:y=\frac{(x+3)}{(x+4)}
|
extreme points of f(x)=(-10)/(x^2)
|
extreme\:points\:f(x)=\frac{-10}{x^{2}}
|
extreme points of f(x)=64x^3-12x+3
|
extreme\:points\:f(x)=64x^{3}-12x+3
|
intercepts of (1+5x-2x^2)/(x-2)
|
intercepts\:\frac{1+5x-2x^{2}}{x-2}
|
critical points of f(x)=-2x^2+8x
|
critical\:points\:f(x)=-2x^{2}+8x
|
inverse of f(x)=y=-5x
|
inverse\:f(x)=y=-5x
|
periodicity of f(x)=5cos((6pi n)/(35))
|
periodicity\:f(x)=5\cos(\frac{6\pi\:n}{35})
|
parity cot(x)
|
parity\:\cot(x)
|
domain of f(x)=(7x+7)/(7x-2)
|
domain\:f(x)=\frac{7x+7}{7x-2}
|
asymptotes of f(x)=(3x^2+20x+12)/(2x+12)
|
asymptotes\:f(x)=\frac{3x^{2}+20x+12}{2x+12}
|
domain of sqrt((8x+24)/x)
|
domain\:\sqrt{\frac{8x+24}{x}}
|
domain of f(-3)=x^2-x-8
|
domain\:f(-3)=x^{2}-x-8
|
inverse of e^{-x^2}
|
inverse\:e^{-x^{2}}
|
inverse of f(x)= 1/(x^2+1)
|
inverse\:f(x)=\frac{1}{x^{2}+1}
|
domain of (3x^2+1)-(x+4)
|
domain\:(3x^{2}+1)-(x+4)
|
asymptotes of f(x)=2^x
|
asymptotes\:f(x)=2^{x}
|
domain of f(x)=sqrt((-x^2+16)(x+1))
|
domain\:f(x)=\sqrt{(-x^{2}+16)(x+1)}
|
inflection points of f(x)=(3x-1)/(x+1)
|
inflection\:points\:f(x)=\frac{3x-1}{x+1}
|
inflection points of ((e^x-e^{-x}))/9
|
inflection\:points\:\frac{(e^{x}-e^{-x})}{9}
|
critical points of f(x)=x^6-3x^4
|
critical\:points\:f(x)=x^{6}-3x^{4}
|
parity (x+2/3)^2-3
|
parity\:(x+\frac{2}{3})^{2}-3
|
asymptotes of (e^{x^2+1})/2
|
asymptotes\:\frac{e^{x^{2}+1}}{2}
|
slope intercept of-5x-2y=4
|
slope\:intercept\:-5x-2y=4
|
domain of sqrt(x-8)
|
domain\:\sqrt{x-8}
|
inverse of f(x)=-2x^2,x>= 0
|
inverse\:f(x)=-2x^{2},x\ge\:0
|
domain of (x-3)/(5x-15)
|
domain\:\frac{x-3}{5x-15}
|
distance (1,-4)(11,8)
|
distance\:(1,-4)(11,8)
|
intercepts of f(x)=sqrt(x+4)
|
intercepts\:f(x)=\sqrt{x+4}
|
midpoint (-9,3)(7,-8)
|
midpoint\:(-9,3)(7,-8)
|
inverse of y= 1/(x+4)
|
inverse\:y=\frac{1}{x+4}
|
intercepts of f(x)= 1/(x-3)
|
intercepts\:f(x)=\frac{1}{x-3}
|
midpoint (-3,-1)(-4,2)
|
midpoint\:(-3,-1)(-4,2)
|
symmetry y=x^2-2x-35
|
symmetry\:y=x^{2}-2x-35
|
vertex f(x)=y=x^2-4x+3
|
vertex\:f(x)=y=x^{2}-4x+3
|
asymptotes of f(x)=(5+x)/(2x+e^{-x)}
|
asymptotes\:f(x)=\frac{5+x}{2x+e^{-x}}
|
periodicity of f(x)=sin(4x)
|
periodicity\:f(x)=\sin(4x)
|
intercepts of f(x)=(x^2+5)/x
|
intercepts\:f(x)=\frac{x^{2}+5}{x}
|
f(x)=log_{3}(x-1)
|
f(x)=\log_{3}(x-1)
|
inflection points of xe^{1/x}
|
inflection\:points\:xe^{\frac{1}{x}}
|
line (-2/3 ,2)(-4, 1/2)
|
line\:(-\frac{2}{3},2)(-4,\frac{1}{2})
|
domain of f(x)=(80)/(x^2+10x)
|
domain\:f(x)=\frac{80}{x^{2}+10x}
|
domain of f(t)=sqrt(t+1)
|
domain\:f(t)=\sqrt{t+1}
|
inverse of y=5x+5
|
inverse\:y=5x+5
|
asymptotes of (3x^2)/(x^2+1)
|
asymptotes\:\frac{3x^{2}}{x^{2}+1}
|
domain of sqrt(4x+1)
|
domain\:\sqrt{4x+1}
|
intercepts of f(x)=x^2-3x+2
|
intercepts\:f(x)=x^{2}-3x+2
|
domain of f(x)=(2x-1)/(x-3)
|
domain\:f(x)=\frac{2x-1}{x-3}
|
inverse of 1/(4^x+1)
|
inverse\:\frac{1}{4^{x}+1}
|
inflection points of f(x)=x^2(3-x)^2
|
inflection\:points\:f(x)=x^{2}(3-x)^{2}
|
inverse of y=x^2-4x+3
|
inverse\:y=x^{2}-4x+3
|
domain of f(x)=(sqrt(t-2))/(2t-6)
|
domain\:f(x)=\frac{\sqrt{t-2}}{2t-6}
|
slope of y= 1/2 x+3
|
slope\:y=\frac{1}{2}x+3
|
y=4x-1
|
y=4x-1
|
inverse of y=6x+1
|
inverse\:y=6x+1
|
extreme points of f(x)=x^2(x-3)(x+2)
|
extreme\:points\:f(x)=x^{2}(x-3)(x+2)
|
inverse of x^3+3
|
inverse\:x^{3}+3
|
domain of sqrt(5x+8)
|
domain\:\sqrt{5x+8}
|
midpoint (sqrt(3),5sqrt(2))(-2sqrt(3),-sqrt(2))
|
midpoint\:(\sqrt{3},5\sqrt{2})(-2\sqrt{3},-\sqrt{2})
|
domain of-sqrt(-x-9)
|
domain\:-\sqrt{-x-9}
|
f(x)=x^2+6x+8
|
f(x)=x^{2}+6x+8
|
range of f(x)=x^2-8
|
range\:f(x)=x^{2}-8
|
parity (sin(t)+tcos(t))/(cos(t)-tsin(t))
|
parity\:\frac{\sin(t)+tcos(t)}{\cos(t)-tsin(t)}
|
range of f(x)=x^4-4x^2
|
range\:f(x)=x^{4}-4x^{2}
|
shift 2cos(6x+(pi)/2)
|
shift\:2\cos(6x+\frac{\pi}{2})
|
domain of f(x)=(5-2x)/(6x+3)
|
domain\:f(x)=\frac{5-2x}{6x+3}
|
inverse of f(x)=(x-2)^3-1
|
inverse\:f(x)=(x-2)^{3}-1
|
inverse of f(x)=-4-9/2 x
|
inverse\:f(x)=-4-\frac{9}{2}x
|
domain of 2^x-5
|
domain\:2^{x}-5
|
distance (5,-3)(6,-5)
|
distance\:(5,-3)(6,-5)
|
inverse of f(x)= 3/2 x-3/2
|
inverse\:f(x)=\frac{3}{2}x-\frac{3}{2}
|
symmetry y=2x^2-16
|
symmetry\:y=2x^{2}-16
|
inverse of y=5x
|
inverse\:y=5x
|