inverse of f(x)=\sqrt[3]{x+10}
|
inverse\:f(x)=\sqrt[3]{x+10}
|
extreme points of f(x)=-(x^2)/2+(x^3)/3
|
extreme\:points\:f(x)=-\frac{x^{2}}{2}+\frac{x^{3}}{3}
|
line (3,-7),(3,-10)
|
line\:(3,-7),(3,-10)
|
domain of (x^2-4x)/(11)
|
domain\:\frac{x^{2}-4x}{11}
|
domain of f(x)=-x,x< 0
|
domain\:f(x)=-x,x\lt\:0
|
inverse of f(x)= 2/(x-9)
|
inverse\:f(x)=\frac{2}{x-9}
|
midpoint (-1,4),(4,-2)
|
midpoint\:(-1,4),(4,-2)
|
inverse of f(x)=-3x^2+7
|
inverse\:f(x)=-3x^{2}+7
|
inverse of f(x)=(1+e^x)/(1-e^x)
|
inverse\:f(x)=\frac{1+e^{x}}{1-e^{x}}
|
intercepts of-25x+1000
|
intercepts\:-25x+1000
|
parity f(x)=2sin(x)cos(x)
|
parity\:f(x)=2\sin(x)\cos(x)
|
asymptotes of f(x)=y=ln(e/x)
|
asymptotes\:f(x)=y=\ln(\frac{e}{x})
|
critical points of x^3+x^2-2x
|
critical\:points\:x^{3}+x^{2}-2x
|
parallel y=2x-3,\at (-7,-2)
|
parallel\:y=2x-3,\at\:(-7,-2)
|
y=-3x-2
|
y=-3x-2
|
shift 2sin(3x-pi)
|
shift\:2\sin(3x-\pi)
|
domain of f(x)=4x^2-7
|
domain\:f(x)=4x^{2}-7
|
line m=-1/4 (-2,5)
|
line\:m=-\frac{1}{4}(-2,5)
|
midpoint (2,-6)(4,6)
|
midpoint\:(2,-6)(4,6)
|
asymptotes of-x^3+12x-16
|
asymptotes\:-x^{3}+12x-16
|
extreme points of f(x)=x^2-1
|
extreme\:points\:f(x)=x^{2}-1
|
inverse of f(x)=y=x-6
|
inverse\:f(x)=y=x-6
|
range of f(x)=|x-6|
|
range\:f(x)=|x-6|
|
inflection points of (x^2)/(x-5)
|
inflection\:points\:\frac{x^{2}}{x-5}
|
domain of sqrt(x)+sqrt(2-x)
|
domain\:\sqrt{x}+\sqrt{2-x}
|
domain of f(x)=-1/(2sqrt(1-x))
|
domain\:f(x)=-\frac{1}{2\sqrt{1-x}}
|
domain of 1/(\frac{1){sqrt(x)}}
|
domain\:\frac{1}{\frac{1}{\sqrt{x}}}
|
domain of y=sqrt(x^2+1)
|
domain\:y=\sqrt{x^{2}+1}
|
intercepts of (x^2+x-2)/(x^2+3x+2)
|
intercepts\:\frac{x^{2}+x-2}{x^{2}+3x+2}
|
domain of f(x)= x/(sqrt(x-4))
|
domain\:f(x)=\frac{x}{\sqrt{x-4}}
|
domain of f(x)=\sqrt[3]{x}+3
|
domain\:f(x)=\sqrt[3]{x}+3
|
parallel-1/4 x=-1(-5,-8)
|
parallel\:-\frac{1}{4}x=-1(-5,-8)
|
asymptotes of f(x)=(x^2-16)/(16x-32)
|
asymptotes\:f(x)=\frac{x^{2}-16}{16x-32}
|
domain of f(x)=(3x^2-8)/(sqrt(x^2+5x+6))
|
domain\:f(x)=\frac{3x^{2}-8}{\sqrt{x^{2}+5x+6}}
|
inverse of f(x)=2x^2-5x+6
|
inverse\:f(x)=2x^{2}-5x+6
|
inflection points of f(x)=x
|
inflection\:points\:f(x)=x
|
intercepts of f(x)=x^2-2x-8
|
intercepts\:f(x)=x^{2}-2x-8
|
range of |x|+|x-1|
|
range\:|x|+|x-1|
|
domain of f(x)=30
|
domain\:f(x)=30
|
asymptotes of f(x)=(x^2-3x-4)/(x-2)
|
asymptotes\:f(x)=\frac{x^{2}-3x-4}{x-2}
|
domain of f(x)= 3/(sqrt(x+5))
|
domain\:f(x)=\frac{3}{\sqrt{x+5}}
|
monotone intervals (x^2(x+1))/(x+1)
|
monotone\:intervals\:\frac{x^{2}(x+1)}{x+1}
|
frequency 3cos(pi x)-2
|
frequency\:3\cos(\pi\:x)-2
|
intercepts of x^2-4x+1
|
intercepts\:x^{2}-4x+1
|
periodicity of cos(2x)
|
periodicity\:\cos(2x)
|
inverse of f(x)=x^2+9,x>= 0
|
inverse\:f(x)=x^{2}+9,x\ge\:0
|
domain of f(x)=sqrt(x^2-121)
|
domain\:f(x)=\sqrt{x^{2}-121}
|
domain of sqrt((x-4)/(x-2))
|
domain\:\sqrt{\frac{x-4}{x-2}}
|
critical points of f(x)=(x-1)/(x+1)
|
critical\:points\:f(x)=\frac{x-1}{x+1}
|
inverse of f(x)=((e^x+e^{-x}))/2
|
inverse\:f(x)=\frac{(e^{x}+e^{-x})}{2}
|
asymptotes of f(x)= 4/(x-8)-2
|
asymptotes\:f(x)=\frac{4}{x-8}-2
|
range of 2/(3x-1)
|
range\:\frac{2}{3x-1}
|
range of x^2(x+1)(x-3)
|
range\:x^{2}(x+1)(x-3)
|
intercepts of 5x^2+10x+6
|
intercepts\:5x^{2}+10x+6
|
domain of f(x)=2^x-3
|
domain\:f(x)=2^{x}-3
|
domain of (x^2+x+1)/(x^2-7x+12)
|
domain\:\frac{x^{2}+x+1}{x^{2}-7x+12}
|
range of g(x)=sin^2(x)
|
range\:g(x)=\sin^{2}(x)
|
slope of 4x+3
|
slope\:4x+3
|
slope intercept of 4x+3y=0
|
slope\:intercept\:4x+3y=0
|
intercepts of f(x)= 2/3 x-5
|
intercepts\:f(x)=\frac{2}{3}x-5
|
slope of 4+2x
|
slope\:4+2x
|
domain of (sqrt(x))/(2(sqrt(x))^2-5)
|
domain\:\frac{\sqrt{x}}{2(\sqrt{x})^{2}-5}
|
inverse of f(x)=log_{10}(x)-0.3
|
inverse\:f(x)=\log_{10}(x)-0.3
|
range of y=x^2-25
|
range\:y=x^{2}-25
|
asymptotes of (2x^2-12x+19)/(x^2-6x+9)
|
asymptotes\:\frac{2x^{2}-12x+19}{x^{2}-6x+9}
|
slope intercept of y-343=-4/7 (x-64)
|
slope\:intercept\:y-343=-\frac{4}{7}(x-64)
|
perpendicular 10x-6y=-4
|
perpendicular\:10x-6y=-4
|
critical points of f(x)=-3x^2+24x
|
critical\:points\:f(x)=-3x^{2}+24x
|
critical points of f(x)=tan(x)
|
critical\:points\:f(x)=\tan(x)
|
parallel 5x-8y-7=0
|
parallel\:5x-8y-7=0
|
inverse of f(x)= 1/2 (x-1)^3
|
inverse\:f(x)=\frac{1}{2}(x-1)^{3}
|
intercepts of sqrt(x+2)-5
|
intercepts\:\sqrt{x+2}-5
|
domain of f(x)=log_{2}(x^2)
|
domain\:f(x)=\log_{2}(x^{2})
|
asymptotes of f(x)=(2x+6)/(x+4)
|
asymptotes\:f(x)=\frac{2x+6}{x+4}
|
intercepts of (x^2)/(x+3)
|
intercepts\:\frac{x^{2}}{x+3}
|
intercepts of f(x)=x^2+x+1
|
intercepts\:f(x)=x^{2}+x+1
|
domain of g(x)=(sqrt(x))/(9x^2+8x-1)
|
domain\:g(x)=\frac{\sqrt{x}}{9x^{2}+8x-1}
|
slope intercept of 5x+y=4
|
slope\:intercept\:5x+y=4
|
critical points of f(x)=3x+sin(3x)
|
critical\:points\:f(x)=3x+\sin(3x)
|
asymptotes of (x^2-4x-5)/(x^2-1)
|
asymptotes\:\frac{x^{2}-4x-5}{x^{2}-1}
|
inverse of f(x)= 1/2 sin(x/2)+1/2
|
inverse\:f(x)=\frac{1}{2}\sin(\frac{x}{2})+\frac{1}{2}
|
asymptotes of f(x)=((2x-5)(2x+5))/(x^2)
|
asymptotes\:f(x)=\frac{(2x-5)(2x+5)}{x^{2}}
|
line (-P,0),(0,-R)
|
line\:(-P,0),(0,-R)
|
domain of f(x)= 7/(7+x)
|
domain\:f(x)=\frac{7}{7+x}
|
asymptotes of f(x)=x^3-2x^2+x
|
asymptotes\:f(x)=x^{3}-2x^{2}+x
|
midpoint (9,-8)(-7,-5)
|
midpoint\:(9,-8)(-7,-5)
|
range of f(x)=2sqrt(x-3)
|
range\:f(x)=2\sqrt{x-3}
|
range of 3^x+6
|
range\:3^{x}+6
|
asymptotes of f(x)=(x^2+1)/(x+1)
|
asymptotes\:f(x)=\frac{x^{2}+1}{x+1}
|
domain of sqrt((25-x^2)(x+1))
|
domain\:\sqrt{(25-x^{2})(x+1)}
|
inflection points of (x^2-9)/(x-1)
|
inflection\:points\:\frac{x^{2}-9}{x-1}
|
intercepts of f(x)=(x^2)/(x^2+3)
|
intercepts\:f(x)=\frac{x^{2}}{x^{2}+3}
|
intercepts of f(x)=x^2-3x+4
|
intercepts\:f(x)=x^{2}-3x+4
|
inverse of f(x)= x/(6x+2)
|
inverse\:f(x)=\frac{x}{6x+2}
|
domain of f(x)=\sqrt[4]{56x^2}
|
domain\:f(x)=\sqrt[4]{56x^{2}}
|
inverse of f(x)=sqrt(2x-10)
|
inverse\:f(x)=\sqrt{2x-10}
|
domain of f(x)= 9/(sqrt(x))
|
domain\:f(x)=\frac{9}{\sqrt{x}}
|
critical points of f(x)=(x+1)^2(x-4)^3
|
critical\:points\:f(x)=(x+1)^{2}(x-4)^{3}
|
extreme points of f(x)=8x^4-48x^2
|
extreme\:points\:f(x)=8x^{4}-48x^{2}
|
critical points of x^3-x^2-5x+7
|
critical\:points\:x^{3}-x^{2}-5x+7
|