domain f(x)=(x+1)2
|
domain\:f(x)=(x+1)2
|
domain f(x)= 1/(sqrt(x)-1)
|
domain\:f(x)=\frac{1}{\sqrt{x}-1}
|
domain y= 3/(x+2)
|
domain\:y=\frac{3}{x+2}
|
domain 2x^2-4x-2
|
domain\:2x^{2}-4x-2
|
domain \sqrt[3]{x+4}-5
|
domain\:\sqrt[3]{x+4}-5
|
domain f(x)= 1/(sqrt(x^2+13x+36))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}+13x+36}}
|
domain f(x)=(3x^2+4)/(x^2-9x+20)
|
domain\:f(x)=\frac{3x^{2}+4}{x^{2}-9x+20}
|
domain f(x)= 1/(2+ln(x))
|
domain\:f(x)=\frac{1}{2+\ln(x)}
|
domain f(x)=(-2,1),(1,-2),(4,2),(4,3)
|
domain\:f(x)=(-2,1),(1,-2),(4,2),(4,3)
|
domain y=(x^2-36)/(x+1)
|
domain\:y=\frac{x^{2}-36}{x+1}
|
domain g(x)=log_{3}(8-2x)+1
|
domain\:g(x)=\log_{3}(8-2x)+1
|
domain f(x)=(2x+4)/(sqrt(24-8x))
|
domain\:f(x)=\frac{2x+4}{\sqrt{24-8x}}
|
domain f(x)=(x+2)/(sqrt(-x))
|
domain\:f(x)=\frac{x+2}{\sqrt{-x}}
|
domain (x^2-4)/(9x+4)
|
domain\:\frac{x^{2}-4}{9x+4}
|
domain (2x-6)/(x^2+2x-15)
|
domain\:\frac{2x-6}{x^{2}+2x-15}
|
domain f(x)= 1/(x^2-x-12)
|
domain\:f(x)=\frac{1}{x^{2}-x-12}
|
domain f(x)=((x+3)/(x-1))
|
domain\:f(x)=(\frac{x+3}{x-1})
|
domain sqrt(4-x^2)+(x+2)/(sqrt(11-x))
|
domain\:\sqrt{4-x^{2}}+\frac{x+2}{\sqrt{11-x}}
|
domain f(x)=e^{sin(π/x)}
|
domain\:f(x)=e^{\sin(\frac{π}{x})}
|
inverse f(x)=log_{5}(x+1)
|
inverse\:f(x)=\log_{5}(x+1)
|
domain y=sqrt((x^2-1)/(x^3+x))
|
domain\:y=\sqrt{\frac{x^{2}-1}{x^{3}+x}}
|
domain f(x)=x^3+x^2
|
domain\:f(x)=x^{3}+x^{2}
|
domain (x^2)/(x-9)
|
domain\:\frac{x^{2}}{x-9}
|
domain f(x)=(2x-3)/(x^2+4)
|
domain\:f(x)=\frac{2x-3}{x^{2}+4}
|
domain f(x)=sqrt(2cos(x)-1)
|
domain\:f(x)=\sqrt{2\cos(x)-1}
|
domain f(x)= 8/(sqrt(x-3))
|
domain\:f(x)=\frac{8}{\sqrt{x-3}}
|
domain 1-log_{10}(x)
|
domain\:1-\log_{10}(x)
|
domain-x^2+4x+5
|
domain\:-x^{2}+4x+5
|
domain (5x-3)/(1-4x)
|
domain\:\frac{5x-3}{1-4x}
|
domain f(x)=x+x/(x^2-1)
|
domain\:f(x)=x+\frac{x}{x^{2}-1}
|
inverse (3-2t)^{3/2}
|
inverse\:(3-2t)^{\frac{3}{2}}
|
domain 1+2/x
|
domain\:1+\frac{2}{x}
|
domain f(x)= 1/(sqrt(6-2x-x^2))
|
domain\:f(x)=\frac{1}{\sqrt{6-2x-x^{2}}}
|
domain f(x)=(x-2)^3(3x+14)
|
domain\:f(x)=(x-2)^{3}(3x+14)
|
domain log_{3}(x-3)
|
domain\:\log_{3}(x-3)
|
domain 5/(x-3)
|
domain\:\frac{5}{x-3}
|
domain f(x)=(sqrt(3x-1))/(x-5)
|
domain\:f(x)=\frac{\sqrt{3x-1}}{x-5}
|
domain f(x)=sqrt(x-4)+sqrt(9-x)
|
domain\:f(x)=\sqrt{x-4}+\sqrt{9-x}
|
domain x/(1-2x)
|
domain\:\frac{x}{1-2x}
|
domain (x-8)/(x-5)
|
domain\:\frac{x-8}{x-5}
|
domain-2cos(4x)
|
domain\:-2\cos(4x)
|
asymptotes (9(x-6))/(x^2-7x+6)
|
asymptotes\:\frac{9(x-6)}{x^{2}-7x+6}
|
domain f(x)=-2x^2+3
|
domain\:f(x)=-2x^{2}+3
|
domain e^{arctan(x)}
|
domain\:e^{\arctan(x)}
|
domain ln(1)
|
domain\:\ln(1)
|
domain f(x)=sqrt(6-x^2)
|
domain\:f(x)=\sqrt{6-x^{2}}
|
domain f(x)=((1+x^2))/(4-x^2)
|
domain\:f(x)=\frac{(1+x^{2})}{4-x^{2}}
|
domain (8x)/(x+3)
|
domain\:\frac{8x}{x+3}
|
domain x^2sin(x)
|
domain\:x^{2}\sin(x)
|
domain f(x)=3+cos(2x)
|
domain\:f(x)=3+\cos(2x)
|
domain sqrt(3x-9)
|
domain\:\sqrt{3x-9}
|
domain (x^2+9)^2+9
|
domain\:(x^{2}+9)^{2}+9
|
perpendicular 4x-3y=5
|
perpendicular\:4x-3y=5
|
domain sqrt(3x-3)
|
domain\:\sqrt{3x-3}
|
domain y=3cot(2)(x+π/6)-8
|
domain\:y=3\cot(2)(x+\frac{π}{6})-8
|
domain y=2x^2+3
|
domain\:y=2x^{2}+3
|
domain 1/2 x-4
|
domain\:\frac{1}{2}x-4
|
domain (8x^3+12x^2+2x+6)/(2x^2+3)
|
domain\:\frac{8x^{3}+12x^{2}+2x+6}{2x^{2}+3}
|
domain (log_{3}(x))/(x+1)
|
domain\:\frac{\log_{3}(x)}{x+1}
|
domain f(x)=(x-3)/(x^2+5x)
|
domain\:f(x)=\frac{x-3}{x^{2}+5x}
|
domain f(x)=(sqrt(x))/(x-3)
|
domain\:f(x)=\frac{\sqrt{x}}{x-3}
|
domain f(x)=(sqrt(x-3))/(x^2+3x-40)
|
domain\:f(x)=\frac{\sqrt{x-3}}{x^{2}+3x-40}
|
domain (2-x)/(x+3)
|
domain\:\frac{2-x}{x+3}
|
asymptotes f(x)=(4x^2+x-9)/(2x^2-6x+1)
|
asymptotes\:f(x)=\frac{4x^{2}+x-9}{2x^{2}-6x+1}
|
intercepts f(x)=-x^2-3x+4
|
intercepts\:f(x)=-x^{2}-3x+4
|
domain y=5cot(8x)+3
|
domain\:y=5\cot(8x)+3
|
domain y= 1/x+2
|
domain\:y=\frac{1}{x}+2
|
domain f(x)=(x-5)/(sqrt(-12-4x))
|
domain\:f(x)=\frac{x-5}{\sqrt{-12-4x}}
|
domain f(x)=-1+2x-x^2
|
domain\:f(x)=-1+2x-x^{2}
|
domain f(x)=2^{-x}+1
|
domain\:f(x)=2^{-x}+1
|
domain log_{3}(x+9)-4
|
domain\:\log_{3}(x+9)-4
|
domain f(x)=(4x-5)/(x^2+10x+16)
|
domain\:f(x)=\frac{4x-5}{x^{2}+10x+16}
|
domain (e^x)/(1+e^x)
|
domain\:\frac{e^{x}}{1+e^{x}}
|
domain (x^2+x-12)/(x^2-x-6)
|
domain\:\frac{x^{2}+x-12}{x^{2}-x-6}
|
domain ln(-x^2+4)
|
domain\:\ln(-x^{2}+4)
|
distance (1,4)(3,5)
|
distance\:(1,4)(3,5)
|
domain f(x)=(x+3)/(sqrt((6-3x)))
|
domain\:f(x)=\frac{x+3}{\sqrt{(6-3x)}}
|
domain (x^2-25)/(x+1)
|
domain\:\frac{x^{2}-25}{x+1}
|
domain f(x)=x^2-6x+1
|
domain\:f(x)=x^{2}-6x+1
|
domain x/(sqrt(x-6))
|
domain\:\frac{x}{\sqrt{x-6}}
|
domain f(x)=cos(x)+sqrt(sin(x)-1)
|
domain\:f(x)=\cos(x)+\sqrt{\sin(x)-1}
|
domain f(x)=y= 1/2 x^2
|
domain\:f(x)=y=\frac{1}{2}x^{2}
|
domain f(t)=sin(1/(t^2+1))
|
domain\:f(t)=\sin(\frac{1}{t^{2}+1})
|
domain f(x)=3-sqrt(x+5)
|
domain\:f(x)=3-\sqrt{x+5}
|
domain f(x)=\sqrt[3]{2t-1}
|
domain\:f(x)=\sqrt[3]{2t-1}
|
domain y=f(x)=(2x-1)/(x-1)
|
domain\:y=f(x)=\frac{2x-1}{x-1}
|
inverse f(x)=(3x)/(x-5)
|
inverse\:f(x)=\frac{3x}{x-5}
|
domain f(x)=sqrt(28-4x)
|
domain\:f(x)=\sqrt{28-4x}
|
domain f(x)=-e^x-2
|
domain\:f(x)=-e^{x}-2
|
domain f(x)=(x+3)/(2x)
|
domain\:f(x)=\frac{x+3}{2x}
|
domain f(x)=-2x^2+4x-2
|
domain\:f(x)=-2x^{2}+4x-2
|
domain f(x)=2sin(sqrt(x))+1
|
domain\:f(x)=2\sin(\sqrt{x})+1
|
domain f(x)= 1/3 x^3+3x^2-27x,-15<x<9
|
domain\:f(x)=\frac{1}{3}x^{3}+3x^{2}-27x,-15<x<9
|
domain f(x)=(4x+6)/(sqrt(14-7x))
|
domain\:f(x)=\frac{4x+6}{\sqrt{14-7x}}
|
domain f(x)=-3x^2+3
|
domain\:f(x)=-3x^{2}+3
|
domain f(x)=-x^2+4x
|
domain\:f(x)=-x^{2}+4x
|
domain f(x)=(2x^2-3)/(x^3+3x^2+3x+1)
|
domain\:f(x)=\frac{2x^{2}-3}{x^{3}+3x^{2}+3x+1}
|
asymptotes f(x)=((x+1)(sqrt(4x^2+x)))/(2x^2+x-1)
|
asymptotes\:f(x)=\frac{(x+1)(\sqrt{4x^{2}+x})}{2x^{2}+x-1}
|
domain f(x)=-x^2+5x
|
domain\:f(x)=-x^{2}+5x
|
domain x^3-21
|
domain\:x^{3}-21
|