range of x/(sqrt(1+x))
|
range\:\frac{x}{\sqrt{1+x}}
|
intercepts of ln(x)+6
|
intercepts\:\ln(x)+6
|
symmetry x^2-10x+24
|
symmetry\:x^{2}-10x+24
|
range of f(x)=(x-7)/(x^2+7)+1
|
range\:f(x)=\frac{x-7}{x^{2}+7}+1
|
asymptotes of (x^2+3x)/(x^2-2x-15)
|
asymptotes\:\frac{x^{2}+3x}{x^{2}-2x-15}
|
range of f(x)=3x-1
|
range\:f(x)=3x-1
|
asymptotes of f(x)= 4/(x+3)
|
asymptotes\:f(x)=\frac{4}{x+3}
|
range of (x^2+5x)/(x^2+7x+10)
|
range\:\frac{x^{2}+5x}{x^{2}+7x+10}
|
intercepts of f(x)=ln(x)+5
|
intercepts\:f(x)=\ln(x)+5
|
inflection points of f(x)=e^{2.5x^2}
|
inflection\:points\:f(x)=e^{2.5x^{2}}
|
line y=2(x+1)+4
|
line\:y=2(x+1)+4
|
range of sqrt(13-x)
|
range\:\sqrt{13-x}
|
domain of 9+sqrt(x^2-4)
|
domain\:9+\sqrt{x^{2}-4}
|
periodicity of 2sin(3x-pi)
|
periodicity\:2\sin(3x-\pi)
|
periodicity of y=sin(1/2)(x+(pi)/4)
|
periodicity\:y=\sin(\frac{1}{2})(x+\frac{\pi}{4})
|
inverse of y=3^{x+1}-2
|
inverse\:y=3^{x+1}-2
|
intercepts of f(x)=(x-4)/(-4x-16)
|
intercepts\:f(x)=\frac{x-4}{-4x-16}
|
inverse of f(x)=-1/5 x=
|
inverse\:f(x)=-\frac{1}{5}x=
|
inverse of f(x)= 1/(x-3)+4
|
inverse\:f(x)=\frac{1}{x-3}+4
|
periodicity of f(x)=2sin(2/3 x-(pi)/6)
|
periodicity\:f(x)=2\sin(\frac{2}{3}x-\frac{\pi}{6})
|
f(x)=2x^2-3x+1
|
f(x)=2x^{2}-3x+1
|
monotone intervals f(x)=3x-5
|
monotone\:intervals\:f(x)=3x-5
|
domain of y= x/(x^2+9)
|
domain\:y=\frac{x}{x^{2}+9}
|
asymptotes of f8
|
asymptotes\:f8
|
domain of f(x)=sqrt((x+1)/(x^2)-1)
|
domain\:f(x)=\sqrt{\frac{x+1}{x^{2}}-1}
|
parity f(x)=3x^4-6x^3
|
parity\:f(x)=3x^{4}-6x^{3}
|
inverse of f(x)= x/5-3
|
inverse\:f(x)=\frac{x}{5}-3
|
inverse of x^2-12x+46
|
inverse\:x^{2}-12x+46
|
symmetry-x^2-1x+2
|
symmetry\:-x^{2}-1x+2
|
inverse of f(x)=((x+2))/((x-3))
|
inverse\:f(x)=\frac{(x+2)}{(x-3)}
|
f(x)=sqrt(x-4)
|
f(x)=\sqrt{x-4}
|
domain of f(x)=sqrt(9-t^2)
|
domain\:f(x)=\sqrt{9-t^{2}}
|
asymptotes of 7/(3+e^x)
|
asymptotes\:\frac{7}{3+e^{x}}
|
monotone intervals (6x)/7 (4x)/3
|
monotone\:intervals\:\frac{6x}{7}\frac{4x}{3}
|
inverse of f(x)=log_{2}(x-3)+1
|
inverse\:f(x)=\log_{2}(x-3)+1
|
line (2019,-560631),(2020,5523594)
|
line\:(2019,-560631),(2020,5523594)
|
range of (x^2+1)/2
|
range\:\frac{x^{2}+1}{2}
|
domain of (x^2+7x)/(5x^2-1)
|
domain\:\frac{x^{2}+7x}{5x^{2}-1}
|
intercepts of f(x)=-1/2 x^2+4x-2
|
intercepts\:f(x)=-\frac{1}{2}x^{2}+4x-2
|
asymptotes of f(x)= 5/((x-2)^2)
|
asymptotes\:f(x)=\frac{5}{(x-2)^{2}}
|
inverse of f(x)=6-2x^2
|
inverse\:f(x)=6-2x^{2}
|
range of f(x)=5^{x-2}
|
range\:f(x)=5^{x-2}
|
inverse of f(x)=-2x-7
|
inverse\:f(x)=-2x-7
|
inverse of f(x)=4(x+1)^2-1
|
inverse\:f(x)=4(x+1)^{2}-1
|
range of f(x)=sqrt((2x-3)/(x+1))
|
range\:f(x)=\sqrt{\frac{2x-3}{x+1}}
|
domain of (x-3)sqrt(x)
|
domain\:(x-3)\sqrt{x}
|
range of-(x+5)^2+2
|
range\:-(x+5)^{2}+2
|
extreme points of y=x^4-16x^2
|
extreme\:points\:y=x^{4}-16x^{2}
|
domain of f(x)=3x^2-8
|
domain\:f(x)=3x^{2}-8
|
monotone intervals (x^2+2x+4)/(x-2)
|
monotone\:intervals\:\frac{x^{2}+2x+4}{x-2}
|
domain of h(x)=(x^2-8x+15)/(x^2-10x+21)
|
domain\:h(x)=\frac{x^{2}-8x+15}{x^{2}-10x+21}
|
line (6,4)(4,1)
|
line\:(6,4)(4,1)
|
monotone intervals f(x)=x^2+4x-5
|
monotone\:intervals\:f(x)=x^{2}+4x-5
|
domain of sqrt(2-5x)
|
domain\:\sqrt{2-5x}
|
inverse of f(x)= 9/(5x)
|
inverse\:f(x)=\frac{9}{5x}
|
perpendicular y=-1/2 x+4
|
perpendicular\:y=-\frac{1}{2}x+4
|
range of x/((x-1)(x+5))
|
range\:\frac{x}{(x-1)(x+5)}
|
extreme points of f(x)=x^3+3x^2-24x
|
extreme\:points\:f(x)=x^{3}+3x^{2}-24x
|
domain of f(x)= 4/x-1
|
domain\:f(x)=\frac{4}{x}-1
|
asymptotes of f(x)=4-2^{-x}
|
asymptotes\:f(x)=4-2^{-x}
|
line (0,6),(10,6)
|
line\:(0,6),(10,6)
|
inverse of f(x)=2(x+1)^3
|
inverse\:f(x)=2(x+1)^{3}
|
domain of 1/((x+2)^3)
|
domain\:\frac{1}{(x+2)^{3}}
|
extreme points of f(x)=-x^3+6x^2-15
|
extreme\:points\:f(x)=-x^{3}+6x^{2}-15
|
domain of f(x)=3x^2sqrt(x-5)
|
domain\:f(x)=3x^{2}\sqrt{x-5}
|
inverse of f(x)=7
|
inverse\:f(x)=7
|
asymptotes of f(x)=(5x+10)/(-2x^2-6x-4)
|
asymptotes\:f(x)=\frac{5x+10}{-2x^{2}-6x-4}
|
asymptotes of 2/(x^2-2x-3)
|
asymptotes\:\frac{2}{x^{2}-2x-3}
|
amplitude of-5sin(2x)
|
amplitude\:-5\sin(2x)
|
inverse of f(x)=x^{12}
|
inverse\:f(x)=x^{12}
|
range of sqrt(x+3)-4
|
range\:\sqrt{x+3}-4
|
domain of ln(x^2-14x)
|
domain\:\ln(x^{2}-14x)
|
critical points of-x^3-3x
|
critical\:points\:-x^{3}-3x
|
domain of f(x)=sqrt(-2x)
|
domain\:f(x)=\sqrt{-2x}
|
range of y=-3x^2-12x-9
|
range\:y=-3x^{2}-12x-9
|
range of y=1+3/(x-1)
|
range\:y=1+\frac{3}{x-1}
|
intercepts of f(x)=x-3y=-3
|
intercepts\:f(x)=x-3y=-3
|
domain of f(x)= 1/(2-sqrt(8-e^{5t))}
|
domain\:f(x)=\frac{1}{2-\sqrt{8-e^{5t}}}
|
range of f(x)=2+sqrt({x^3/(x+5)\)}
|
range\:f(x)=2+\sqrt{\{x^{3}/(x+5)\}}
|
critical points of f(x)=x^{1/11}(x-1)^2
|
critical\:points\:f(x)=x^{\frac{1}{11}}(x-1)^{2}
|
extreme points of f(x)= 1/3 x^3+x^2-3x
|
extreme\:points\:f(x)=\frac{1}{3}x^{3}+x^{2}-3x
|
range of (2x+3)/(x(x^2+2x-3))
|
range\:\frac{2x+3}{x(x^{2}+2x-3)}
|
domain of f(x)=sqrt(3x+1)\div (x-1)
|
domain\:f(x)=\sqrt{3x+1}\div\:(x-1)
|
periodicity of f(x)=5*cos(2*pi*x/3)
|
periodicity\:f(x)=5\cdot\:\cos(2\cdot\:\pi\cdot\:x/3)
|
periodicity of y=-tan(x-(3pi)/2)
|
periodicity\:y=-\tan(x-\frac{3\pi}{2})
|
domain of f(x)=sqrt(x^2+x+3)
|
domain\:f(x)=\sqrt{x^{2}+x+3}
|
range of f(x)=5-x^2
|
range\:f(x)=5-x^{2}
|
inverse of f(x)=(x^2+1)/4
|
inverse\:f(x)=\frac{x^{2}+1}{4}
|
range of-sqrt(x-3)
|
range\:-\sqrt{x-3}
|
inverse of (4s+12)/(s^2+8s+16)
|
inverse\:\frac{4s+12}{s^{2}+8s+16}
|
domain of y=ln(|x|)
|
domain\:y=\ln(|x|)
|
midpoint (0,2)(3,0)
|
midpoint\:(0,2)(3,0)
|
range of f(x)=x^3-4x
|
range\:f(x)=x^{3}-4x
|
midpoint (5,5)(7,1)
|
midpoint\:(5,5)(7,1)
|
asymptotes of f(x)=tan(1/2 x)
|
asymptotes\:f(x)=\tan(\frac{1}{2}x)
|
slope intercept of y=5x-25
|
slope\:intercept\:y=5x-25
|
range of f(x)=x/(4x-5)
|
range\:f(x)=x/(4x-5)
|
intercepts of f(x)=2x^2+2x-4
|
intercepts\:f(x)=2x^{2}+2x-4
|
inflection points of 1/(1+x^2)
|
inflection\:points\:\frac{1}{1+x^{2}}
|
domain of f(x)=(7x+6)/(x-3)
|
domain\:f(x)=\frac{7x+6}{x-3}
|