asymptotes of f(x)=(2x^2-6)/x
|
asymptotes\:f(x)=\frac{2x^{2}-6}{x}
|
slope intercept of 6x+2y=4
|
slope\:intercept\:6x+2y=4
|
domain of f(x)=(1/11 (x-4)^2-6/11)
|
domain\:f(x)=(\frac{1}{11}(x-4)^{2}-\frac{6}{11})
|
extreme points of f(x)=-x^2+2x+4
|
extreme\:points\:f(x)=-x^{2}+2x+4
|
domain of f(x)= x/(x^2+9)
|
domain\:f(x)=\frac{x}{x^{2}+9}
|
domain of f(x)=(7a)/((a+1)(a-4))
|
domain\:f(x)=\frac{7a}{(a+1)(a-4)}
|
domain of f(x)=sqrt(3x+27)
|
domain\:f(x)=\sqrt{3x+27}
|
asymptotes of f(x)=(x^2-2x-8)/(x^2+x-6)
|
asymptotes\:f(x)=\frac{x^{2}-2x-8}{x^{2}+x-6}
|
domain of (x-6)^2
|
domain\:(x-6)^{2}
|
domain of f(x)=-x^2+2x+5
|
domain\:f(x)=-x^{2}+2x+5
|
slope intercept of 7/8
|
slope\:intercept\:\frac{7}{8}
|
range of x^2+x-20
|
range\:x^{2}+x-20
|
inverse of (1000)/(100+900e^{-x)}
|
inverse\:\frac{1000}{100+900e^{-x}}
|
domain of f(x)=(x-7)/(x+3)
|
domain\:f(x)=\frac{x-7}{x+3}
|
range of (x-1)/(x+3)
|
range\:\frac{x-1}{x+3}
|
range of f(x)= 1/3 sqrt(x)-4
|
range\:f(x)=\frac{1}{3}\sqrt{x}-4
|
f(x)=3x^2
|
f(x)=3x^{2}
|
domain of f(x)=e^{x-4}
|
domain\:f(x)=e^{x-4}
|
domain of f(x)=(x-3)^2-4
|
domain\:f(x)=(x-3)^{2}-4
|
extreme points of f(x)=3x^2-4x-1
|
extreme\:points\:f(x)=3x^{2}-4x-1
|
slope of 2x+4x=12
|
slope\:2x+4x=12
|
midpoint (-3,4)(10,0)
|
midpoint\:(-3,4)(10,0)
|
domain of f(x)=log_{4}(x^2-4x-12)
|
domain\:f(x)=\log_{4}(x^{2}-4x-12)
|
slope intercept of 2x+y=10
|
slope\:intercept\:2x+y=10
|
symmetry 1/(t^2+1)
|
symmetry\:\frac{1}{t^{2}+1}
|
parallel y= 5/3 x-4
|
parallel\:y=\frac{5}{3}x-4
|
midpoint (15,20)(5,4)
|
midpoint\:(15,20)(5,4)
|
domain of f(x)=(3x)/(x^2-4)
|
domain\:f(x)=\frac{3x}{x^{2}-4}
|
domain of f(x)=sqrt((7x^2-63)/9)
|
domain\:f(x)=\sqrt{\frac{7x^{2}-63}{9}}
|
inflection points of-3x^4-2x^2+1
|
inflection\:points\:-3x^{4}-2x^{2}+1
|
midpoint (2,-3)(-4,6)
|
midpoint\:(2,-3)(-4,6)
|
domain of f(x)=(sqrt(4-x))(sqrt(x^2-1))
|
domain\:f(x)=(\sqrt{4-x})(\sqrt{x^{2}-1})
|
asymptotes of f(x)=(x+5)/(x^2+3)
|
asymptotes\:f(x)=\frac{x+5}{x^{2}+3}
|
inverse of f(x)=x-2/x
|
inverse\:f(x)=x-\frac{2}{x}
|
range of-6p^2+300p
|
range\:-6p^{2}+300p
|
inverse of log_{6}(2x)
|
inverse\:\log_{6}(2x)
|
asymptotes of (2x-5)/(x-3)
|
asymptotes\:\frac{2x-5}{x-3}
|
range of f(x)=sqrt(x)
|
range\:f(x)=\sqrt{x}
|
domain of f(x)=(1-5sqrt(x))/x
|
domain\:f(x)=\frac{1-5\sqrt{x}}{x}
|
inverse of-4x+9
|
inverse\:-4x+9
|
asymptotes of y= x/(x^2+1)
|
asymptotes\:y=\frac{x}{x^{2}+1}
|
intercepts of f(x)=(10x^2)/(x^4+25)
|
intercepts\:f(x)=\frac{10x^{2}}{x^{4}+25}
|
midpoint (5,4)(-3,-6)
|
midpoint\:(5,4)(-3,-6)
|
intercepts of f(x)=y^2=x^3-4x
|
intercepts\:f(x)=y^{2}=x^{3}-4x
|
domain of f(x)=(2x^2-3)/(x^2+2x+1)
|
domain\:f(x)=\frac{2x^{2}-3}{x^{2}+2x+1}
|
critical points of f(x)=60x^2-20x^3
|
critical\:points\:f(x)=60x^{2}-20x^{3}
|
range of-2x^2+5x-6
|
range\:-2x^{2}+5x-6
|
inverse of f(x)= 9/(x^2)
|
inverse\:f(x)=\frac{9}{x^{2}}
|
inflection points of f(x)=x^4+4x^3+7
|
inflection\:points\:f(x)=x^{4}+4x^{3}+7
|
parity arctan(tan^3(x))
|
parity\:\arctan(\tan^{3}(x))
|
inverse of 8x
|
inverse\:8x
|
extreme points of f(x)=2+5x-x^2
|
extreme\:points\:f(x)=2+5x-x^{2}
|
domain of y=sqrt(x^2-1)
|
domain\:y=\sqrt{x^{2}-1}
|
critical points of 1/(x+2)
|
critical\:points\:\frac{1}{x+2}
|
intercepts of (6x+9)/(x-1)
|
intercepts\:\frac{6x+9}{x-1}
|
inflection points of x^2sqrt(1-x^2)
|
inflection\:points\:x^{2}\sqrt{1-x^{2}}
|
slope of 7x+2y=14
|
slope\:7x+2y=14
|
inverse of f(x)= 1/6 x-1
|
inverse\:f(x)=\frac{1}{6}x-1
|
critical points of 4(x+3)^2-100
|
critical\:points\:4(x+3)^{2}-100
|
asymptotes of 2tan(1/2 (x-pi))+3
|
asymptotes\:2\tan(\frac{1}{2}(x-\pi))+3
|
sin(4x)
|
\sin(4x)
|
intercepts of 7*2^x
|
intercepts\:7\cdot\:2^{x}
|
inverse of f(x)=x^3+8
|
inverse\:f(x)=x^{3}+8
|
slope intercept of 9x+4y=3
|
slope\:intercept\:9x+4y=3
|
asymptotes of (5x^2+4)/(x^2+3x-10)
|
asymptotes\:\frac{5x^{2}+4}{x^{2}+3x-10}
|
asymptotes of f(x)=(2x-1)/(x-1)
|
asymptotes\:f(x)=\frac{2x-1}{x-1}
|
inverse of f(x)=7x^{3/2}-4
|
inverse\:f(x)=7x^{\frac{3}{2}}-4
|
intercepts of f(x)=3x^2+9x-3
|
intercepts\:f(x)=3x^{2}+9x-3
|
critical points of f(x)=(x+1)^2
|
critical\:points\:f(x)=(x+1)^{2}
|
distance (0,1)(-5,-3)
|
distance\:(0,1)(-5,-3)
|
critical points of f(x)=9(x-3)^{2/3}
|
critical\:points\:f(x)=9(x-3)^{\frac{2}{3}}
|
extreme points of 1/(x+7)
|
extreme\:points\:\frac{1}{x+7}
|
domain of f(x)=(x+2)/(3x-9)
|
domain\:f(x)=\frac{x+2}{3x-9}
|
range of 1+\sqrt[3]{x}
|
range\:1+\sqrt[3]{x}
|
inflection points of x^3-2x^2-15x+10
|
inflection\:points\:x^{3}-2x^{2}-15x+10
|
inverse of f(x)=4sqrt(2+x)
|
inverse\:f(x)=4\sqrt{2+x}
|
inverse of f(x)= 4/(x+3)
|
inverse\:f(x)=\frac{4}{x+3}
|
periodicity of f(x)=3cot(1/2 x)-2
|
periodicity\:f(x)=3\cot(\frac{1}{2}x)-2
|
range of (3x)/(3x-1)
|
range\:\frac{3x}{3x-1}
|
domain of f(x)=(x+3)/(x+2)
|
domain\:f(x)=\frac{x+3}{x+2}
|
parity f(x)=7x^3-x
|
parity\:f(x)=7x^{3}-x
|
extreme points of f(x)=t^3-6t^2+9t+1
|
extreme\:points\:f(x)=t^{3}-6t^{2}+9t+1
|
domain of (1-2t)/(4+t)
|
domain\:\frac{1-2t}{4+t}
|
range of f(x)=-sqrt(x)
|
range\:f(x)=-\sqrt{x}
|
domain of f(x)=(10x^2+35x)/(49x^2-28x+4)
|
domain\:f(x)=\frac{10x^{2}+35x}{49x^{2}-28x+4}
|
domain of f(x)=ln(x^2-x-20)
|
domain\:f(x)=\ln(x^{2}-x-20)
|
slope of 4x-3y=12
|
slope\:4x-3y=12
|
asymptotes of f(x)=(3x^2+6)/(x^2-2x-3)
|
asymptotes\:f(x)=\frac{3x^{2}+6}{x^{2}-2x-3}
|
inverse of f(x)=(x+2)/(5x-1)
|
inverse\:f(x)=\frac{x+2}{5x-1}
|
extreme points of f(x)=x^4-3x^2
|
extreme\:points\:f(x)=x^{4}-3x^{2}
|
domain of sqrt(6-x)
|
domain\:\sqrt{6-x}
|
domain of f(x)=6-x+1/x
|
domain\:f(x)=6-x+\frac{1}{x}
|
asymptotes of f(x)=(2x+8)/(x^2+3x-4)
|
asymptotes\:f(x)=\frac{2x+8}{x^{2}+3x-4}
|
inverse of log_{10}(2x+5)
|
inverse\:\log_{10}(2x+5)
|
inverse of f(x)=(9x+4)/(x-7)
|
inverse\:f(x)=\frac{9x+4}{x-7}
|
inverse of f(x)=\sqrt[3]{x^2-5x-4}
|
inverse\:f(x)=\sqrt[3]{x^{2}-5x-4}
|
parallel y=7x-8,\at (5,-2)
|
parallel\:y=7x-8,\at\:(5,-2)
|
domain of f(x)= 3/(2x-5)
|
domain\:f(x)=\frac{3}{2x-5}
|
domain of 2+sqrt(x-1)
|
domain\:2+\sqrt{x-1}
|
intercepts of 2/x
|
intercepts\:\frac{2}{x}
|