asymptotes of f(x)=(3x-5)/(4x+13)
|
asymptotes\:f(x)=\frac{3x-5}{4x+13}
|
parity f(x)= 1/(6x^3)
|
parity\:f(x)=\frac{1}{6x^{3}}
|
domain of g(x)= 3/(x-4)
|
domain\:g(x)=\frac{3}{x-4}
|
line (5,14)(2,8)
|
line\:(5,14)(2,8)
|
domain of-(x-6)^2+1
|
domain\:-(x-6)^{2}+1
|
range of f(x)=x^2-2x-3
|
range\:f(x)=x^{2}-2x-3
|
parity x/(x^2-1)
|
parity\:\frac{x}{x^{2}-1}
|
domain of (4x+8)/(x^2+4x-32)
|
domain\:\frac{4x+8}{x^{2}+4x-32}
|
domain of sqrt(5x)+7x-2
|
domain\:\sqrt{5x}+7x-2
|
line (-6,-3)m= 18/7
|
line\:(-6,-3)m=\frac{18}{7}
|
asymptotes of f(x)=(x-2)/(4x-16)
|
asymptotes\:f(x)=\frac{x-2}{4x-16}
|
symmetry (x-1)/(x+1)
|
symmetry\:\frac{x-1}{x+1}
|
line (-3,3)(5,9)
|
line\:(-3,3)(5,9)
|
critical points of (2x)/(16x^2+1)
|
critical\:points\:\frac{2x}{16x^{2}+1}
|
slope of f(x)=-2x
|
slope\:f(x)=-2x
|
line (5,3),(-4,7)
|
line\:(5,3),(-4,7)
|
distance (-6,-4)(3,-2)
|
distance\:(-6,-4)(3,-2)
|
slope intercept of 4x+5y=10
|
slope\:intercept\:4x+5y=10
|
inverse of f(x)=-sqrt(81-x^2)
|
inverse\:f(x)=-\sqrt{81-x^{2}}
|
asymptotes of y=(x-2)^2
|
asymptotes\:y=(x-2)^{2}
|
domain of 9/(\frac{x){x+9}}
|
domain\:\frac{9}{\frac{x}{x+9}}
|
inverse of f(x)= 1/(x-9)
|
inverse\:f(x)=\frac{1}{x-9}
|
range of f(x)=x+2
|
range\:f(x)=x+2
|
range of f(x)= 4/(3-x)
|
range\:f(x)=\frac{4}{3-x}
|
domain of y=x^3-27
|
domain\:y=x^{3}-27
|
parity f(x)=x|x|
|
parity\:f(x)=x|x|
|
inverse of f(x)=pi x^3
|
inverse\:f(x)=\pi\:x^{3}
|
inverse of (x-7)/(x+7)
|
inverse\:\frac{x-7}{x+7}
|
domain of f(x)= x/(9x-7)
|
domain\:f(x)=\frac{x}{9x-7}
|
domain of f(x)= 1/(x^2-10x+25)
|
domain\:f(x)=\frac{1}{x^{2}-10x+25}
|
asymptotes of e^{x-1}+2
|
asymptotes\:e^{x-1}+2
|
critical points of xsqrt(4-x)
|
critical\:points\:x\sqrt{4-x}
|
midpoint (0,5)(8,1)
|
midpoint\:(0,5)(8,1)
|
distance (-9,14)(1,10)
|
distance\:(-9,14)(1,10)
|
domain of f(x)=sqrt(x)+8
|
domain\:f(x)=\sqrt{x}+8
|
symmetry-1/2 x^2+4x-2
|
symmetry\:-\frac{1}{2}x^{2}+4x-2
|
domain of f(x)=2(x-1)-1
|
domain\:f(x)=2(x-1)-1
|
asymptotes of f(x)= 1/(x-6)
|
asymptotes\:f(x)=\frac{1}{x-6}
|
inverse of f(x)=sqrt(x+7)
|
inverse\:f(x)=\sqrt{x+7}
|
inverse of f(x)=(5x-3)/(x-1)
|
inverse\:f(x)=\frac{5x-3}{x-1}
|
critical points of f(x)=x^4-8x^2+16
|
critical\:points\:f(x)=x^{4}-8x^{2}+16
|
inverse of f(x)=log_{2}(x-4)
|
inverse\:f(x)=\log_{2}(x-4)
|
domain of f(x)=xsqrt(x-6)
|
domain\:f(x)=x\sqrt{x-6}
|
midpoint (9,-9)(-6,-7)
|
midpoint\:(9,-9)(-6,-7)
|
domain of f(x)= 1/(9x)
|
domain\:f(x)=\frac{1}{9x}
|
parity f(x)=cos(2x)
|
parity\:f(x)=\cos(2x)
|
slope intercept of 2x+y=-2
|
slope\:intercept\:2x+y=-2
|
extreme points of f(x)=(e^x-e^{-x})/6
|
extreme\:points\:f(x)=\frac{e^{x}-e^{-x}}{6}
|
extreme points of f(x)=11x^4-66x^2
|
extreme\:points\:f(x)=11x^{4}-66x^{2}
|
domain of f(x)=8x^2-14x-15
|
domain\:f(x)=8x^{2}-14x-15
|
asymptotes of f(x)=(-3)/(x-2)
|
asymptotes\:f(x)=\frac{-3}{x-2}
|
inverse of f(x)=-x^2+2x-5
|
inverse\:f(x)=-x^{2}+2x-5
|
critical points of e^xx^2+4e^xx+2e^x
|
critical\:points\:e^{x}x^{2}+4e^{x}x+2e^{x}
|
inverse of 1/(x+3)
|
inverse\:\frac{1}{x+3}
|
range of x/(x^2-x+1)
|
range\:\frac{x}{x^{2}-x+1}
|
range of x^3+6
|
range\:x^{3}+6
|
domain of e^{(-1-2x)/(x-2)}
|
domain\:e^{\frac{-1-2x}{x-2}}
|
parallel x=8,\at (-3,-2)
|
parallel\:x=8,\at\:(-3,-2)
|
inverse of f(x)= 1/x+2
|
inverse\:f(x)=\frac{1}{x}+2
|
inverse of log_{4}(x+1)
|
inverse\:\log_{4}(x+1)
|
inverse of f(x)=x^2-15
|
inverse\:f(x)=x^{2}-15
|
line (1,1),(4,-0.5)
|
line\:(1,1),(4,-0.5)
|
domain of f(x)= 7/(x-2)
|
domain\:f(x)=\frac{7}{x-2}
|
extreme points of f(x)=-x^2-4x-10
|
extreme\:points\:f(x)=-x^{2}-4x-10
|
domain of f(x)=sqrt(y+9)
|
domain\:f(x)=\sqrt{y+9}
|
midpoint (0,8)(-4,4)
|
midpoint\:(0,8)(-4,4)
|
critical points of (x^3+6x-8)/x-3x
|
critical\:points\:\frac{x^{3}+6x-8}{x}-3x
|
asymptotes of (-3x^2+24x-45)/(2x^2-10x)
|
asymptotes\:\frac{-3x^{2}+24x-45}{2x^{2}-10x}
|
slope intercept of 4x-3y=6
|
slope\:intercept\:4x-3y=6
|
range of f(x)=x^2+4x-5
|
range\:f(x)=x^{2}+4x-5
|
symmetry (x-2)^2-1
|
symmetry\:(x-2)^{2}-1
|
inverse of f(x)=(3x-4)/(5x+3)
|
inverse\:f(x)=\frac{3x-4}{5x+3}
|
intercepts of x^3-7x+6
|
intercepts\:x^{3}-7x+6
|
extreme points of f(x)=-x^3+3x^2-4
|
extreme\:points\:f(x)=-x^{3}+3x^{2}-4
|
domain of f(x)=2+1/x
|
domain\:f(x)=2+\frac{1}{x}
|
domain of f(x)=2-7x^2
|
domain\:f(x)=2-7x^{2}
|
domain of f(x)=((1-2x))/(5+x)
|
domain\:f(x)=\frac{(1-2x)}{5+x}
|
domain of f(x)=y=3^x
|
domain\:f(x)=y=3^{x}
|
range of f(x)= 4/(x-3)
|
range\:f(x)=\frac{4}{x-3}
|
monotone intervals f(x)=x(5-x)(2x-3)
|
monotone\:intervals\:f(x)=x(5-x)(2x-3)
|
domain of g(x)=(sqrt(2+x))/(3-x)
|
domain\:g(x)=\frac{\sqrt{2+x}}{3-x}
|
perpendicular (5,4)x-2y=7
|
perpendicular\:(5,4)x-2y=7
|
domain of f(x)=3sqrt(x)+2
|
domain\:f(x)=3\sqrt{x}+2
|
inverse of sqrt(x+6)
|
inverse\:\sqrt{x+6}
|
line (-3,1),(5,-5)
|
line\:(-3,1),(5,-5)
|
range of f(x)= 1/(sqrt(x+2))
|
range\:f(x)=\frac{1}{\sqrt{x+2}}
|
domain of (sqrt(x^2-1))/(x+2)
|
domain\:\frac{\sqrt{x^{2}-1}}{x+2}
|
range of e^{-x}-2
|
range\:e^{-x}-2
|
inverse of f(x)=(x^2)/9
|
inverse\:f(x)=\frac{x^{2}}{9}
|
range of y=-3tan(1/2 x)
|
range\:y=-3\tan(\frac{1}{2}x)
|
domain of f(x)= x/(x^2+2x-3)
|
domain\:f(x)=\frac{x}{x^{2}+2x-3}
|
domain of sqrt(-(x-5)/2)
|
domain\:\sqrt{-\frac{x-5}{2}}
|
extreme points of f(x)=2x^3-24x^2+72x
|
extreme\:points\:f(x)=2x^{3}-24x^{2}+72x
|
asymptotes of f(x)=(x^2+2x)/(-3x^2+3x+6)
|
asymptotes\:f(x)=\frac{x^{2}+2x}{-3x^{2}+3x+6}
|
domain of f(x)=sqrt(-x+9)
|
domain\:f(x)=\sqrt{-x+9}
|
critical points of y=9x^2-x^3-3
|
critical\:points\:y=9x^{2}-x^{3}-3
|
y=-x^2+3
|
y=-x^{2}+3
|
inverse of 4x+11
|
inverse\:4x+11
|
intercepts of f(x)=x^2+3x-4
|
intercepts\:f(x)=x^{2}+3x-4
|
domain of-2x^2+8x
|
domain\:-2x^{2}+8x
|