vertex f(x)=y=x^2-5x
|
vertex\:f(x)=y=x^{2}-5x
|
range of f(x)=-sqrt(36-x^2)
|
range\:f(x)=-\sqrt{36-x^{2}}
|
line (1,2),(3,7)
|
line\:(1,2),(3,7)
|
inverse of (x-2)^3+1
|
inverse\:(x-2)^{3}+1
|
asymptotes of f(x)=(-x^2-3x+3)/(x+1)
|
asymptotes\:f(x)=\frac{-x^{2}-3x+3}{x+1}
|
line (8,1)(8,-7)
|
line\:(8,1)(8,-7)
|
inverse of 4x^7+6
|
inverse\:4x^{7}+6
|
midpoint (2,1)(-8,-9)
|
midpoint\:(2,1)(-8,-9)
|
inverse of f(x)=(4^x)/(4+4^x)
|
inverse\:f(x)=\frac{4^{x}}{4+4^{x}}
|
amplitude of 5sin(2x+pi)
|
amplitude\:5\sin(2x+\pi)
|
inverse of f(x)=2^{x+3}-2
|
inverse\:f(x)=2^{x+3}-2
|
asymptotes of 2/(x+1)
|
asymptotes\:\frac{2}{x+1}
|
domain of f(x)=-3x^2+3x-2
|
domain\:f(x)=-3x^{2}+3x-2
|
line (0,4),(0,-3)
|
line\:(0,4),(0,-3)
|
y=x^4
|
y=x^{4}
|
parity sin(p)
|
parity\:\sin(p)
|
range of 2-x^2
|
range\:2-x^{2}
|
range of (9-x^2)/(2x^2)
|
range\:\frac{9-x^{2}}{2x^{2}}
|
parity f(x)=-9x^4+5x+3
|
parity\:f(x)=-9x^{4}+5x+3
|
perpendicular 3x+4y=0
|
perpendicular\:3x+4y=0
|
asymptotes of f(x)=(-2x+13)/(-4x-2)
|
asymptotes\:f(x)=\frac{-2x+13}{-4x-2}
|
inverse of x^3+5
|
inverse\:x^{3}+5
|
inverse of f(x)= 1/4 x^3-2
|
inverse\:f(x)=\frac{1}{4}x^{3}-2
|
range of 3cos(4x)
|
range\:3\cos(4x)
|
inverse of y=1-x/5
|
inverse\:y=1-\frac{x}{5}
|
domain of f(x)=(x-3)/(2x^2+10x)
|
domain\:f(x)=\frac{x-3}{2x^{2}+10x}
|
domain of f(x)=-4x^3+5
|
domain\:f(x)=-4x^{3}+5
|
domain of f(x)=\sqrt[3]{x-1}+3
|
domain\:f(x)=\sqrt[3]{x-1}+3
|
domain of 1/(sqrt(x^2-4x-5))
|
domain\:\frac{1}{\sqrt{x^{2}-4x-5}}
|
asymptotes of f(x)=(4x^2+32x)/(3x+24)
|
asymptotes\:f(x)=\frac{4x^{2}+32x}{3x+24}
|
midpoint (5,6)(7,2)
|
midpoint\:(5,6)(7,2)
|
domain of 1/(x^2-4x-5)
|
domain\:\frac{1}{x^{2}-4x-5}
|
inverse of f(x)=-3/2 x-5
|
inverse\:f(x)=-\frac{3}{2}x-5
|
inverse of f(x)=\sqrt[3]{x}-5
|
inverse\:f(x)=\sqrt[3]{x}-5
|
parity f(x)=sqrt(8)x
|
parity\:f(x)=\sqrt{8}x
|
range of (9x^2-9)/(3x^2+12x+12)
|
range\:\frac{9x^{2}-9}{3x^{2}+12x+12}
|
domain of f(x)=2^x
|
domain\:f(x)=2^{x}
|
line (1,4)(-3,7)
|
line\:(1,4)(-3,7)
|
inflection points of x^4-2x^3
|
inflection\:points\:x^{4}-2x^{3}
|
inverse of f(x)=-8/x
|
inverse\:f(x)=-\frac{8}{x}
|
domain of f(x)= x/(1-x)
|
domain\:f(x)=\frac{x}{1-x}
|
extreme points of 20x^4-120x^2
|
extreme\:points\:20x^{4}-120x^{2}
|
periodicity of f(x)=-2sec((pi x)/2)
|
periodicity\:f(x)=-2\sec(\frac{\pi\:x}{2})
|
distance (2,10)(8,2)
|
distance\:(2,10)(8,2)
|
domain of f(x)= 1/(ln(x^2-1))
|
domain\:f(x)=\frac{1}{\ln(x^{2}-1)}
|
inflection points of f(x)=(5-e^x)^2
|
inflection\:points\:f(x)=(5-e^{x})^{2}
|
critical points of 5^x
|
critical\:points\:5^{x}
|
domain of f(x)=(15)/(x^2+5x)
|
domain\:f(x)=\frac{15}{x^{2}+5x}
|
asymptotes of f(x)=(x^5-1)/(3x^2-2x-1)
|
asymptotes\:f(x)=\frac{x^{5}-1}{3x^{2}-2x-1}
|
domain of g(x)=sqrt(3x-1)+5
|
domain\:g(x)=\sqrt{3x-1}+5
|
inverse of f(x)=3x^2+4/(x^2)
|
inverse\:f(x)=3x^{2}+\frac{4}{x^{2}}
|
domain of f(x)=sqrt(-6x+24)
|
domain\:f(x)=\sqrt{-6x+24}
|
domain of f(x)=3x^2+sqrt(x-5)
|
domain\:f(x)=3x^{2}+\sqrt{x-5}
|
range of f(x)=-4-x^2
|
range\:f(x)=-4-x^{2}
|
inverse of f(x)=3x^3+1
|
inverse\:f(x)=3x^{3}+1
|
inverse of f(x)=3*5^{x-8}+17
|
inverse\:f(x)=3\cdot\:5^{x-8}+17
|
critical points of x^6(x-4)^5
|
critical\:points\:x^{6}(x-4)^{5}
|
slope intercept of y=-3x+2
|
slope\:intercept\:y=-3x+2
|
domain of f(x)=(7x+1)/(x^2-4)
|
domain\:f(x)=\frac{7x+1}{x^{2}-4}
|
inverse of f(x)=e^{4x-6}
|
inverse\:f(x)=e^{4x-6}
|
asymptotes of f(x)=(2x^2+x-5)/(x^4+9)
|
asymptotes\:f(x)=\frac{2x^{2}+x-5}{x^{4}+9}
|
inverse of f(x)=(4-x)/4
|
inverse\:f(x)=\frac{4-x}{4}
|
inflection points of (x^2-7)/(x-4)
|
inflection\:points\:\frac{x^{2}-7}{x-4}
|
domain of f(x)=(x-2)^3
|
domain\:f(x)=(x-2)^{3}
|
intercepts of x^3-3x^2-x+3
|
intercepts\:x^{3}-3x^{2}-x+3
|
domain of f(x)=(sqrt(t-4))/(3t-24)
|
domain\:f(x)=\frac{\sqrt{t-4}}{3t-24}
|
asymptotes of f(x)=((-1))/(x^3)
|
asymptotes\:f(x)=\frac{(-1)}{x^{3}}
|
intercepts of f(x)= 1/(x+3)
|
intercepts\:f(x)=\frac{1}{x+3}
|
f(x)= 2/3 x+2
|
f(x)=\frac{2}{3}x+2
|
domain of f(x)=(1-4x)/(5+x)
|
domain\:f(x)=\frac{1-4x}{5+x}
|
arcsin
|
\arcsin
|
inverse of (x^2-9)/(4x^2)
|
inverse\:\frac{x^{2}-9}{4x^{2}}
|
domain of f(x)=(x-2)/(4x-16)
|
domain\:f(x)=\frac{x-2}{4x-16}
|
intercepts of ((x^4)/2-(3x^2)/2)
|
intercepts\:(\frac{x^{4}}{2}-\frac{3x^{2}}{2})
|
domain of f(x)=(2x^2-x-9)/(x^2-1)
|
domain\:f(x)=\frac{2x^{2}-x-9}{x^{2}-1}
|
asymptotes of log_{4}(x)
|
asymptotes\:\log_{4}(x)
|
domain of ln(5-x)
|
domain\:\ln(5-x)
|
symmetry y=(2-x)^2
|
symmetry\:y=(2-x)^{2}
|
inverse of f(x)=2sqrt(x-3)
|
inverse\:f(x)=2\sqrt{x-3}
|
inverse of y=x^3+5
|
inverse\:y=x^{3}+5
|
parity f(x)=4x^4-x^2
|
parity\:f(x)=4x^{4}-x^{2}
|
asymptotes of f(x)=(2x^2-50)/(x^2-5x)
|
asymptotes\:f(x)=\frac{2x^{2}-50}{x^{2}-5x}
|
domain of f(x)=sqrt(1/(3x)+2)
|
domain\:f(x)=\sqrt{\frac{1}{3x}+2}
|
f(x)=x
|
f(x)=x
|
critical points of x^2-4x+1
|
critical\:points\:x^{2}-4x+1
|
domain of g(x)=(x-4)/(x^2-16)
|
domain\:g(x)=\frac{x-4}{x^{2}-16}
|
inverse of 1/3 x-3
|
inverse\:\frac{1}{3}x-3
|
inverse of f(x)=(2x-1)/(x+1)
|
inverse\:f(x)=\frac{2x-1}{x+1}
|
domain of (2x)/(x^2-4)
|
domain\:\frac{2x}{x^{2}-4}
|
inverse of f(x)= 9/(2x-3)
|
inverse\:f(x)=\frac{9}{2x-3}
|
inverse of f(x)= 1/4 x-2
|
inverse\:f(x)=\frac{1}{4}x-2
|
domain of sqrt(81-p^2)
|
domain\:\sqrt{81-p^{2}}
|
inverse of f(x)=(x-5)^3
|
inverse\:f(x)=(x-5)^{3}
|
asymptotes of (x-1)/(x+1)
|
asymptotes\:\frac{x-1}{x+1}
|
inverse of f(x)= 1/2 (x+3)^2-2
|
inverse\:f(x)=\frac{1}{2}(x+3)^{2}-2
|
inverse of f(x)=2x^2+2x-1
|
inverse\:f(x)=2x^{2}+2x-1
|
extreme points of f(x)=4x^5-x^4+8x-9
|
extreme\:points\:f(x)=4x^{5}-x^{4}+8x-9
|
inverse of f(x)=x^2-4x-3,x<= 2
|
inverse\:f(x)=x^{2}-4x-3,x\le\:2
|
asymptotes of f(x)=(4x^2-x)/(x^2-1)
|
asymptotes\:f(x)=\frac{4x^{2}-x}{x^{2}-1}
|
range of f(x)=-2^x
|
range\:f(x)=-2^{x}
|