domain of f(x)=x^2+16x+64
|
domain\:f(x)=x^{2}+16x+64
|
line (9,-2),(1,6)
|
line\:(9,-2),(1,6)
|
slope of y-4=-10(x-1)
|
slope\:y-4=-10(x-1)
|
inflection points of f(x)= 1/(x-3)
|
inflection\:points\:f(x)=\frac{1}{x-3}
|
monotone intervals f(x)=2x^5-30x^3
|
monotone\:intervals\:f(x)=2x^{5}-30x^{3}
|
monotone intervals f(x)=3x^{2/3}-x
|
monotone\:intervals\:f(x)=3x^{\frac{2}{3}}-x
|
range of f(x)=x^2-10x+25
|
range\:f(x)=x^{2}-10x+25
|
domain of f(x)=(x-9)/(x^2-81)
|
domain\:f(x)=\frac{x-9}{x^{2}-81}
|
line 2x-4y+5=0
|
line\:2x-4y+5=0
|
intercepts of 3x+5
|
intercepts\:3x+5
|
intercepts of f(x)=x^2+4x-3
|
intercepts\:f(x)=x^{2}+4x-3
|
midpoint (10,4)(4,10)
|
midpoint\:(10,4)(4,10)
|
inverse of f(x)=(x^3-6)^{1/2}
|
inverse\:f(x)=(x^{3}-6)^{\frac{1}{2}}
|
domain of f(x)= x/(sqrt(7-x^2))
|
domain\:f(x)=\frac{x}{\sqrt{7-x^{2}}}
|
inverse of y=2x^2-4
|
inverse\:y=2x^{2}-4
|
critical points of f(x)=(x-9)^3
|
critical\:points\:f(x)=(x-9)^{3}
|
midpoint (-1,6)\land (-4,10)
|
midpoint\:(-1,6)\land\:(-4,10)
|
range of f(x)=x^2-3x+3
|
range\:f(x)=x^{2}-3x+3
|
domain of y=tan(2x-(pi)/3)
|
domain\:y=\tan(2x-\frac{\pi}{3})
|
intercepts of f(x)=x^2-x-8
|
intercepts\:f(x)=x^{2}-x-8
|
extreme points of 7-6cos(theta)
|
extreme\:points\:7-6\cos(\theta)
|
distance (-5,2)(-2,6)
|
distance\:(-5,2)(-2,6)
|
inverse of f(x)= 1/3
|
inverse\:f(x)=\frac{1}{3}
|
domain of f(x)=sqrt(x+6)+sqrt(8-x)
|
domain\:f(x)=\sqrt{x+6}+\sqrt{8-x}
|
asymptotes of (-5x-5)/(3x-5)
|
asymptotes\:\frac{-5x-5}{3x-5}
|
y=4x-2
|
y=4x-2
|
parity f(x)=ln((pi)/x)+arctan(2x)
|
parity\:f(x)=\ln(\frac{\pi}{x})+\arctan(2x)
|
slope intercept of 3x+15y=-135
|
slope\:intercept\:3x+15y=-135
|
critical points of f(x)=x^4-18x^2
|
critical\:points\:f(x)=x^{4}-18x^{2}
|
domain of f(x)=(sqrt(x^2))/(9x^2+8x-1)
|
domain\:f(x)=\frac{\sqrt{x^{2}}}{9x^{2}+8x-1}
|
inverse of f(x)=100+15y
|
inverse\:f(x)=100+15y
|
inverse of 7
|
inverse\:7
|
inverse of f(x)=\sqrt[3]{6x-4}+2
|
inverse\:f(x)=\sqrt[3]{6x-4}+2
|
inverse of f(x)=3+(8+x)^{1/2}
|
inverse\:f(x)=3+(8+x)^{\frac{1}{2}}
|
inverse of f(x)=e^{x^2}
|
inverse\:f(x)=e^{x^{2}}
|
intercepts of f(x)=-3x+4
|
intercepts\:f(x)=-3x+4
|
slope intercept of 12x-3y-12=0
|
slope\:intercept\:12x-3y-12=0
|
domain of f(x)=y+3
|
domain\:f(x)=y+3
|
inverse of f(x)=-3/5 x+6
|
inverse\:f(x)=-\frac{3}{5}x+6
|
shift-2cos(2x+(pi)/3)
|
shift\:-2\cos(2x+\frac{\pi}{3})
|
inflection points of x^4+2x^3-12x^2+1
|
inflection\:points\:x^{4}+2x^{3}-12x^{2}+1
|
monotone intervals (x^2)/(x-1)
|
monotone\:intervals\:\frac{x^{2}}{x-1}
|
midpoint (5,-6)(1,4)
|
midpoint\:(5,-6)(1,4)
|
monotone intervals f(x)=(5-x)e^{-x}
|
monotone\:intervals\:f(x)=(5-x)e^{-x}
|
inverse of g(x)=3x+6
|
inverse\:g(x)=3x+6
|
domain of f(x)=sqrt(x)+2
|
domain\:f(x)=\sqrt{x}+2
|
inverse of 6-x^2,x>= 0
|
inverse\:6-x^{2},x\ge\:0
|
asymptotes of (x^2+2)/(x+3)
|
asymptotes\:\frac{x^{2}+2}{x+3}
|
domain of f(x)=((x-2)^2)/(x-2)
|
domain\:f(x)=\frac{(x-2)^{2}}{x-2}
|
slope of 2x-y=1
|
slope\:2x-y=1
|
intercepts of f(x)=25x^2+4y^2=100
|
intercepts\:f(x)=25x^{2}+4y^{2}=100
|
intercepts of f(x)=x+4
|
intercepts\:f(x)=x+4
|
domain of f(x)=(1-4x)/x < 0
|
domain\:f(x)=\frac{1-4x}{x}\lt\:0
|
intercepts of f(x)=-3x^2+18x-15
|
intercepts\:f(x)=-3x^{2}+18x-15
|
inverse of f(x)=1-2x^3
|
inverse\:f(x)=1-2x^{3}
|
asymptotes of f(x)=(x^2-36)/(x+6)
|
asymptotes\:f(x)=\frac{x^{2}-36}{x+6}
|
distance (3,12)(6,15)
|
distance\:(3,12)(6,15)
|
extreme points of f(x)=-x^4+2x^2+1
|
extreme\:points\:f(x)=-x^{4}+2x^{2}+1
|
inverse of f(x)=(x-5)
|
inverse\:f(x)=(x-5)
|
distance (2,-6),(4,-7)
|
distance\:(2,-6),(4,-7)
|
inverse of f(x)=log_{10}(-2x)
|
inverse\:f(x)=\log_{10}(-2x)
|
domain of-2/(sqrt(x))
|
domain\:-\frac{2}{\sqrt{x}}
|
domain of f(x)=x^2-2x
|
domain\:f(x)=x^{2}-2x
|
slope intercept of (1,9)7
|
slope\:intercept\:(1,9)7
|
domain of (3+3x)/(x-2)
|
domain\:\frac{3+3x}{x-2}
|
domain of f(x)=3-5/(x^4)
|
domain\:f(x)=3-\frac{5}{x^{4}}
|
asymptotes of f(x)=(x^2+5x-6)/(x-6)
|
asymptotes\:f(x)=\frac{x^{2}+5x-6}{x-6}
|
asymptotes of y=(x^2+9)/(9x^2-26x-3)
|
asymptotes\:y=\frac{x^{2}+9}{9x^{2}-26x-3}
|
range of f(x)=x^2+6x+4
|
range\:f(x)=x^{2}+6x+4
|
line m=-3,\at (2,1)
|
line\:m=-3,\at\:(2,1)
|
asymptotes of f(x)=(3x^2)/(x^2+2)
|
asymptotes\:f(x)=\frac{3x^{2}}{x^{2}+2}
|
domain of f(x)=sqrt(x+9)
|
domain\:f(x)=\sqrt{x+9}
|
vertex f(x)=y=10x^2
|
vertex\:f(x)=y=10x^{2}
|
inverse of f(x)=cos(x-(pi)/2)
|
inverse\:f(x)=\cos(x-\frac{\pi}{2})
|
domain of (2-x^2)(x^2-9)
|
domain\:(2-x^{2})(x^{2}-9)
|
range of f(x)= 4/(x^2-4x)
|
range\:f(x)=\frac{4}{x^{2}-4x}
|
inverse of f(x)=\sqrt[3]{27x-81}-5
|
inverse\:f(x)=\sqrt[3]{27x-81}-5
|
asymptotes of f(x)=(5x+1)/(9x-2)
|
asymptotes\:f(x)=\frac{5x+1}{9x-2}
|
domain of f(x)=(7x)/(x-2)
|
domain\:f(x)=\frac{7x}{x-2}
|
domain of 1/x+1/(x-1)+1/(x-2)
|
domain\:\frac{1}{x}+\frac{1}{x-1}+\frac{1}{x-2}
|
range of (4x-3)/(sqrt(4-5x))
|
range\:\frac{4x-3}{\sqrt{4-5x}}
|
inverse of f(x)= 1/2 x-8
|
inverse\:f(x)=\frac{1}{2}x-8
|
domain of x^{x+1}
|
domain\:x^{x+1}
|
range of 3*4^x
|
range\:3\cdot\:4^{x}
|
inverse of y=100(1-t/(40))^2
|
inverse\:y=100(1-\frac{t}{40})^{2}
|
range of y=sqrt(x+3)
|
range\:y=\sqrt{x+3}
|
critical points of f(x)=x^3-6x^2+9x-4
|
critical\:points\:f(x)=x^{3}-6x^{2}+9x-4
|
parity f(x)=x^4-4x^2-1
|
parity\:f(x)=x^{4}-4x^{2}-1
|
midpoint (-8,1)(-4,-9)
|
midpoint\:(-8,1)(-4,-9)
|
domain of f(x)=-3sqrt(x-3)-2
|
domain\:f(x)=-3\sqrt{x-3}-2
|
inverse of f(x)=-5x-1
|
inverse\:f(x)=-5x-1
|
intercepts of x^3+2
|
intercepts\:x^{3}+2
|
inverse of f(x)=3(x+1)
|
inverse\:f(x)=3(x+1)
|
y=-2
|
y=-2
|
critical points of f(x)= 1/(x-7)-1/x
|
critical\:points\:f(x)=\frac{1}{x-7}-\frac{1}{x}
|
inverse of e^{-x}
|
inverse\:e^{-x}
|
midpoint (1,5)(5,1)
|
midpoint\:(1,5)(5,1)
|
critical points of f(x)= x/(sqrt(x^2+1))
|
critical\:points\:f(x)=\frac{x}{\sqrt{x^{2}+1}}
|
inverse of f(x)=-1/64 x^3
|
inverse\:f(x)=-\frac{1}{64}x^{3}
|
extreme points of f(x)=2x+((50)/x)
|
extreme\:points\:f(x)=2x+(\frac{50}{x})
|