domain of (x+9)/(x^2+7x-18)
|
domain\:\frac{x+9}{x^{2}+7x-18}
|
domain of (7(x+9))/(9x)
|
domain\:\frac{7(x+9)}{9x}
|
inverse of x^3
|
inverse\:x^{3}
|
intercepts of f(x)=arctan((x-1)/(x+1))
|
intercepts\:f(x)=\arctan(\frac{x-1}{x+1})
|
parity f(x)=5x
|
parity\:f(x)=5x
|
range of |x-6|
|
range\:|x-6|
|
inverse of f(x)=9x+10
|
inverse\:f(x)=9x+10
|
parity y=3xsin(x)+(sqrt(x))/(cos(x))
|
parity\:y=3x\sin(x)+\frac{\sqrt{x}}{\cos(x)}
|
inverse of f(x)=(x-2)/(x+5)
|
inverse\:f(x)=\frac{x-2}{x+5}
|
domain of f(x)=sqrt(x)-9
|
domain\:f(x)=\sqrt{x}-9
|
slope intercept of 5x-2y=11
|
slope\:intercept\:5x-2y=11
|
monotone intervals f(x)=5-x
|
monotone\:intervals\:f(x)=5-x
|
inverse of f(x)=(1+3x)/(6-6x)
|
inverse\:f(x)=\frac{1+3x}{6-6x}
|
asymptotes of f(x)= 3/((x-2)^3)
|
asymptotes\:f(x)=\frac{3}{(x-2)^{3}}
|
domain of (x+9)^2
|
domain\:(x+9)^{2}
|
domain of f(x)=(sqrt(x^3-8))/(x-4)
|
domain\:f(x)=\frac{\sqrt{x^{3}-8}}{x-4}
|
inverse of f(x)=3sqrt((y+4)^2)
|
inverse\:f(x)=3\sqrt{(y+4)^{2}}
|
inverse of f(x)=((x-2))/((x+3))
|
inverse\:f(x)=\frac{(x-2)}{(x+3)}
|
domain of f(x)=(99)/(x(x+11))
|
domain\:f(x)=\frac{99}{x(x+11)}
|
domain of g(x)=7-x
|
domain\:g(x)=7-x
|
domain of (11-t)^6
|
domain\:(11-t)^{6}
|
asymptotes of f(x)=x-4/x
|
asymptotes\:f(x)=x-\frac{4}{x}
|
inverse of f(x)=e^{1/x}
|
inverse\:f(x)=e^{\frac{1}{x}}
|
inverse of f(x)=arccos(e^x)
|
inverse\:f(x)=arc\cos(e^{x})
|
extreme points of f(x)=(x^2-2x-3)/x
|
extreme\:points\:f(x)=\frac{x^{2}-2x-3}{x}
|
range of f(x)=2^{x+1}-3
|
range\:f(x)=2^{x+1}-3
|
slope intercept of 3/5
|
slope\:intercept\:\frac{3}{5}
|
asymptotes of f(x)=2(3)^x
|
asymptotes\:f(x)=2(3)^{x}
|
midpoint (-5/2 , 3/2)(-11/2 ,-15/2)
|
midpoint\:(-\frac{5}{2},\frac{3}{2})(-\frac{11}{2},-\frac{15}{2})
|
inverse of f(x)=x^2-5x
|
inverse\:f(x)=x^{2}-5x
|
domain of f(x)=log_{3}(x-4)
|
domain\:f(x)=\log_{3}(x-4)
|
critical points of f(x)=(x^2+8x-4)/(x-2)
|
critical\:points\:f(x)=\frac{x^{2}+8x-4}{x-2}
|
domain of (x-3)/(x+3)
|
domain\:\frac{x-3}{x+3}
|
domain of f(x)=sqrt(6x^2+7x-5)
|
domain\:f(x)=\sqrt{6x^{2}+7x-5}
|
domain of f(x)=log_{3}(x-1)+0.239784
|
domain\:f(x)=\log_{3}(x-1)+0.239784
|
inverse of f(x)= 1/(1+x^2)
|
inverse\:f(x)=\frac{1}{1+x^{2}}
|
parity-x^2+3
|
parity\:-x^{2}+3
|
range of 1/(x^3+4x)
|
range\:\frac{1}{x^{3}+4x}
|
range of f(x)=sin(x)+cos(x)
|
range\:f(x)=\sin(x)+\cos(x)
|
domain of \sqrt[6]{x}
|
domain\:\sqrt[6]{x}
|
inverse of f(x)=-2x+4
|
inverse\:f(x)=-2x+4
|
inverse of x^3-7
|
inverse\:x^{3}-7
|
domain of sqrt(25-x^2)*sqrt(x+3)
|
domain\:\sqrt{25-x^{2}}\cdot\:\sqrt{x+3}
|
inverse of f(x)=sqrt((x^2+5x))
|
inverse\:f(x)=\sqrt{(x^{2}+5x)}
|
domain of f(x)=2x^2-5x-3
|
domain\:f(x)=2x^{2}-5x-3
|
midpoint (6,3)(-6,-9)
|
midpoint\:(6,3)(-6,-9)
|
periodicity of f(x)=3cos((pi)/(10)t)
|
periodicity\:f(x)=3\cos(\frac{\pi}{10}t)
|
domain of f(x)= 7/(sqrt(x^3-1))
|
domain\:f(x)=\frac{7}{\sqrt{x^{3}-1}}
|
distance (0.6,-0.2)(3.1,1.4)
|
distance\:(0.6,-0.2)(3.1,1.4)
|
extreme points of f(x)=x^4-32x+5
|
extreme\:points\:f(x)=x^{4}-32x+5
|
inflection points of x^3-9x^2-81x
|
inflection\:points\:x^{3}-9x^{2}-81x
|
f(x)=x+1
|
f(x)=x+1
|
range of (3x^2+2x-1)/(6x^2-7x-3)
|
range\:\frac{3x^{2}+2x-1}{6x^{2}-7x-3}
|
slope intercept of x+2y=4
|
slope\:intercept\:x+2y=4
|
range of 10-1/(5x)
|
range\:10-\frac{1}{5x}
|
line (0,0)(8,2)
|
line\:(0,0)(8,2)
|
range of f(x)=3x-5
|
range\:f(x)=3x-5
|
inverse of f(x)=-3x+11
|
inverse\:f(x)=-3x+11
|
asymptotes of (2x)/(9-x^2)
|
asymptotes\:\frac{2x}{9-x^{2}}
|
parity f(x)=2+tan(x)
|
parity\:f(x)=2+\tan(x)
|
range of x^2-3x+2
|
range\:x^{2}-3x+2
|
slope of y=-4x+8
|
slope\:y=-4x+8
|
domain of f(x)= 1/2 x-4
|
domain\:f(x)=\frac{1}{2}x-4
|
perpendicular y=4
|
perpendicular\:y=4
|
periodicity of y=3sin(x-(pi)/2)
|
periodicity\:y=3\sin(x-\frac{\pi}{2})
|
intercepts of f(x)=-3x-9
|
intercepts\:f(x)=-3x-9
|
slope intercept of y-9= 2/3 (x+7)
|
slope\:intercept\:y-9=\frac{2}{3}(x+7)
|
domain of (4t^2-9)/(8t+16)
|
domain\:\frac{4t^{2}-9}{8t+16}
|
asymptotes of x/(-x-2)
|
asymptotes\:\frac{x}{-x-2}
|
parallel y-(-8)=5(x-3)
|
parallel\:y-(-8)=5(x-3)
|
extreme points of y=2x^3-3x^2-12x+7
|
extreme\:points\:y=2x^{3}-3x^{2}-12x+7
|
inverse of f(x)=9+\sqrt[3]{x}
|
inverse\:f(x)=9+\sqrt[3]{x}
|
domain of-x+12
|
domain\:-x+12
|
global extreme points of x^3
|
global\:extreme\:points\:x^{3}
|
domain of 2sqrt(x+4)-5
|
domain\:2\sqrt{x+4}-5
|
parity f(x)=(e^x)/(1+e^{2x)}
|
parity\:f(x)=\frac{e^{x}}{1+e^{2x}}
|
inverse of f(x)=2370
|
inverse\:f(x)=2370
|
asymptotes of f(x)=(x^2)/(x^2-1)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{2}-1}
|
inverse of f(x)= 15/16 x+21/2
|
inverse\:f(x)=\frac{15}{16}x+\frac{21}{2}
|
inverse of f(x)=x^2+2x+1
|
inverse\:f(x)=x^{2}+2x+1
|
range of f(x)= 1/(sqrt(x+5))
|
range\:f(x)=\frac{1}{\sqrt{x+5}}
|
inverse of f(x)=\sqrt[5]{-x/(10)}
|
inverse\:f(x)=\sqrt[5]{-\frac{x}{10}}
|
inverse of f(x)=-4x-12
|
inverse\:f(x)=-4x-12
|
perpendicular y=-1/4 x+3
|
perpendicular\:y=-\frac{1}{4}x+3
|
extreme points of f(x)=-x^3+3x^2-3
|
extreme\:points\:f(x)=-x^{3}+3x^{2}-3
|
inverse of f(x)=x^2+3,x>= 0
|
inverse\:f(x)=x^{2}+3,x\ge\:0
|
inverse of f(x)=12-x^2
|
inverse\:f(x)=12-x^{2}
|
intercepts of f(x)=x(x+2)(x-3)
|
intercepts\:f(x)=x(x+2)(x-3)
|
inverse of f(x)=(2x)/(x-8)
|
inverse\:f(x)=\frac{2x}{x-8}
|
critical points of f(x)=x^3+3x^2-9x-4
|
critical\:points\:f(x)=x^{3}+3x^{2}-9x-4
|
critical points of f(x)=(480)/(x^6)
|
critical\:points\:f(x)=\frac{480}{x^{6}}
|
domain of f(x)=x^3+2x^2-9x-18
|
domain\:f(x)=x^{3}+2x^{2}-9x-18
|
inverse of f(x)=-4/3 x+2
|
inverse\:f(x)=-\frac{4}{3}x+2
|
distance (2,0)(8,-4)
|
distance\:(2,0)(8,-4)
|
asymptotes of f(x)=4sec(2x-pi)
|
asymptotes\:f(x)=4\sec(2x-\pi)
|
range of (1000)/(100+900e^{-x)}
|
range\:\frac{1000}{100+900e^{-x}}
|
asymptotes of f(x)=(x-1)/(x^2-25)
|
asymptotes\:f(x)=\frac{x-1}{x^{2}-25}
|
monotone intervals f(x)=4x^{3/5}-x^{4/5}
|
monotone\:intervals\:f(x)=4x^{\frac{3}{5}}-x^{\frac{4}{5}}
|
midpoint (5,3)(4,2)
|
midpoint\:(5,3)(4,2)
|
asymptotes of (x^2)/(x^2-1)
|
asymptotes\:\frac{x^{2}}{x^{2}-1}
|