midpoint (-2,1)(3,9)
|
midpoint\:(-2,1)(3,9)
|
slope intercept of 3x-2y=-10
|
slope\:intercept\:3x-2y=-10
|
inverse of f(x)=3x-8
|
inverse\:f(x)=3x-8
|
slope of y=-x-4
|
slope\:y=-x-4
|
shift 2tan((\alpha)/2)
|
shift\:2\tan(\frac{\alpha}{2})
|
intercepts of f(x)=4
|
intercepts\:f(x)=4
|
inverse of f(x)=y=(x+6)/5
|
inverse\:f(x)=y=\frac{x+6}{5}
|
domain of f(x)=x^4-5x^3+4
|
domain\:f(x)=x^{4}-5x^{3}+4
|
domain of sqrt(t+9)
|
domain\:\sqrt{t+9}
|
shift-6cos(-4x-(pi)/8)
|
shift\:-6\cos(-4x-\frac{\pi}{8})
|
domain of (4x)/(x^2-25)
|
domain\:\frac{4x}{x^{2}-25}
|
2x-3
|
2x-3
|
domain of f(x)=(49)/(x^2-x)
|
domain\:f(x)=\frac{49}{x^{2}-x}
|
extreme points of f(x)=x^{4/5}(x-5)^2
|
extreme\:points\:f(x)=x^{4/5}(x-5)^{2}
|
domain of f(x)=sqrt(-x-1)+3
|
domain\:f(x)=\sqrt{-x-1}+3
|
range of (4x^2-16x+17)/(x^2-4x+4)
|
range\:\frac{4x^{2}-16x+17}{x^{2}-4x+4}
|
extreme points of f(x)=-2x^2-12x-16
|
extreme\:points\:f(x)=-2x^{2}-12x-16
|
inverse of 5sqrt(x+9)+1
|
inverse\:5\sqrt{x+9}+1
|
slope intercept of x+6y=2y-7
|
slope\:intercept\:x+6y=2y-7
|
asymptotes of (x-3)/(x^2-x-6)
|
asymptotes\:\frac{x-3}{x^{2}-x-6}
|
inverse of 3/4 sqrt(2x-7)+2
|
inverse\:\frac{3}{4}\sqrt{2x-7}+2
|
line 3x-2y=-6
|
line\:3x-2y=-6
|
slope intercept of x-y=6
|
slope\:intercept\:x-y=6
|
asymptotes of (4x)/(x^3-4x)
|
asymptotes\:\frac{4x}{x^{3}-4x}
|
domain of-1/(sqrt(9-x))
|
domain\:-\frac{1}{\sqrt{9-x}}
|
periodicity of f(x)=2sin(5x)
|
periodicity\:f(x)=2\sin(5x)
|
symmetry x^2+4y^2=4
|
symmetry\:x^{2}+4y^{2}=4
|
extreme points of f(x)=x^{2/3}(x-2)
|
extreme\:points\:f(x)=x^{\frac{2}{3}}(x-2)
|
slope of y-9= 1/5 (x-2)
|
slope\:y-9=\frac{1}{5}(x-2)
|
parity f(x)=|x-1|
|
parity\:f(x)=|x-1|
|
domain of f(x)=sqrt(1+x)*sqrt(1-x)
|
domain\:f(x)=\sqrt{1+x}\cdot\:\sqrt{1-x}
|
inverse of f(x)=(4x)/(x^2+25)
|
inverse\:f(x)=\frac{4x}{x^{2}+25}
|
inverse of 91.1
|
inverse\:91.1
|
inverse of f(x)=(x-6)^2+8
|
inverse\:f(x)=(x-6)^{2}+8
|
2/(x-1)
|
\frac{2}{x-1}
|
asymptotes of f(x)=(12x-3)/(9x^2-4)
|
asymptotes\:f(x)=\frac{12x-3}{9x^{2}-4}
|
asymptotes of (3x^2-27)/(x^2-9x+18)
|
asymptotes\:\frac{3x^{2}-27}{x^{2}-9x+18}
|
slope of-3x-y=2
|
slope\:-3x-y=2
|
domain of arccsc(x+5)
|
domain\:\arccsc(x+5)
|
extreme points of f(x)=2x^3+3x^2-12x+2
|
extreme\:points\:f(x)=2x^{3}+3x^{2}-12x+2
|
critical points of f(x)=12x^2-2
|
critical\:points\:f(x)=12x^{2}-2
|
inverse of (2x+3)/(5-x)
|
inverse\:\frac{2x+3}{5-x}
|
slope intercept of 7x=-5+y
|
slope\:intercept\:7x=-5+y
|
inverse of f(x)=6(4/x)-12
|
inverse\:f(x)=6(\frac{4}{x})-12
|
symmetry y=3x^2+17+10
|
symmetry\:y=3x^{2}+17+10
|
inflection points of x^4-8x^2
|
inflection\:points\:x^{4}-8x^{2}
|
asymptotes of f(x)=(x^2-x)/(x^2-7x+6)
|
asymptotes\:f(x)=\frac{x^{2}-x}{x^{2}-7x+6}
|
inverse of f(x)=sqrt(3x-3)
|
inverse\:f(x)=\sqrt{3x-3}
|
inverse of (4x+11)/(5x-6)
|
inverse\:\frac{4x+11}{5x-6}
|
domain of 1/(sqrt(x+2))
|
domain\:\frac{1}{\sqrt{x+2}}
|
slope intercept of 3x+y=-3
|
slope\:intercept\:3x+y=-3
|
domain of (7x+9)/(6x+5)+(5x+1)/(6x+5)=
|
domain\:\frac{7x+9}{6x+5}+\frac{5x+1}{6x+5}=
|
extreme points of f(x)=x^2+(54)/x
|
extreme\:points\:f(x)=x^{2}+\frac{54}{x}
|
line y=2-3x
|
line\:y=2-3x
|
domain of f(x)=(x+3)/(x^2+3x+2)
|
domain\:f(x)=\frac{x+3}{x^{2}+3x+2}
|
midpoint (2,1)(-3,6)
|
midpoint\:(2,1)(-3,6)
|
slope intercept of 6y-8x=54
|
slope\:intercept\:6y-8x=54
|
domain of f(x)=sqrt(x-1)+sqrt(2-x)
|
domain\:f(x)=\sqrt{x-1}+\sqrt{2-x}
|
asymptotes of f(x)=((x+1))/(x^2-4)
|
asymptotes\:f(x)=\frac{(x+1)}{x^{2}-4}
|
line (3,5)(3,2)
|
line\:(3,5)(3,2)
|
asymptotes of f(x)=(x+3)/(x(x-3))
|
asymptotes\:f(x)=\frac{x+3}{x(x-3)}
|
domain of f(x)= 3/(3x+12)
|
domain\:f(x)=\frac{3}{3x+12}
|
domain of f(x)=sqrt(x-3)
|
domain\:f(x)=\sqrt{x-3}
|
domain of f(x)=(12)/(13-x)
|
domain\:f(x)=\frac{12}{13-x}
|
inverse of f(x)=2x
|
inverse\:f(x)=2x
|
asymptotes of (5x+1)/(x-3)
|
asymptotes\:\frac{5x+1}{x-3}
|
domain of 2^t
|
domain\:2^{t}
|
inverse of f(x)=sqrt(3-4x)
|
inverse\:f(x)=\sqrt{3-4x}
|
intercepts of (3t^2)/(2t^2+8)
|
intercepts\:\frac{3t^{2}}{2t^{2}+8}
|
range of 3/(x+5)
|
range\:\frac{3}{x+5}
|
inverse of f(x)=\sqrt[3]{2x}+7
|
inverse\:f(x)=\sqrt[3]{2x}+7
|
shift f(x)=-2cos(2/3 x)-2
|
shift\:f(x)=-2\cos(\frac{2}{3}x)-2
|
extreme points of f(x)=x^3-4x^2+x+6
|
extreme\:points\:f(x)=x^{3}-4x^{2}+x+6
|
periodicity of 2cos(4x+(pi)/2)
|
periodicity\:2\cos(4x+\frac{\pi}{2})
|
domain of 3/(x^2+2x)
|
domain\:\frac{3}{x^{2}+2x}
|
extreme points of f(x)=x^3-3x^2+12
|
extreme\:points\:f(x)=x^{3}-3x^{2}+12
|
domain of (sqrt(s-1))/(s-4)
|
domain\:\frac{\sqrt{s-1}}{s-4}
|
asymptotes of f(x)=tan^{-1}(x)
|
asymptotes\:f(x)=\tan^{-1}(x)
|
domain of y=(x-5)/(2x+3)
|
domain\:y=\frac{x-5}{2x+3}
|
asymptotes of f(x)=(2x+7)/(3x-13)
|
asymptotes\:f(x)=\frac{2x+7}{3x-13}
|
domain of y=ln((3x-1)/(1-x))
|
domain\:y=\ln(\frac{3x-1}{1-x})
|
line (0,0)(7,2)
|
line\:(0,0)(7,2)
|
amplitude of-sin(4x)
|
amplitude\:-\sin(4x)
|
inverse of y=2^{x-3}
|
inverse\:y=2^{x-3}
|
domain of f(x)=(x-3)/(x^2+3x-18)
|
domain\:f(x)=\frac{x-3}{x^{2}+3x-18}
|
domain of f(x)= x/(\sqrt[4]{81-x^2)}
|
domain\:f(x)=\frac{x}{\sqrt[4]{81-x^{2}}}
|
domain of (4x)/(x^3-4x)
|
domain\:\frac{4x}{x^{3}-4x}
|
asymptotes of f(x)=((3x-4))/(2x-1)
|
asymptotes\:f(x)=\frac{(3x-4)}{2x-1}
|
domain of 1/(x^4-1)
|
domain\:\frac{1}{x^{4}-1}
|
intercepts of f(x)=2-e^{-(x-1)}
|
intercepts\:f(x)=2-e^{-(x-1)}
|
slope intercept of x+y=353
|
slope\:intercept\:x+y=353
|
extreme points of f(x)=x^3+3x+6
|
extreme\:points\:f(x)=x^{3}+3x+6
|
range of f(x)=sqrt(x(4-x))
|
range\:f(x)=\sqrt{x(4-x)}
|
inverse of f(x)=(x^2)/3
|
inverse\:f(x)=\frac{x^{2}}{3}
|
domain of =(187+6z-z^2)/(z^2-21z+68)
|
domain\:=\frac{187+6z-z^{2}}{z^{2}-21z+68}
|
range of f(x)=-sqrt(x+3)
|
range\:f(x)=-\sqrt{x+3}
|
intercepts of (3x-12)/(x^2-8x+16)
|
intercepts\:\frac{3x-12}{x^{2}-8x+16}
|
monotone intervals f(x)=x+1+1/x
|
monotone\:intervals\:f(x)=x+1+\frac{1}{x}
|
asymptotes of f(x)=(4x^2-9)/(6x-9)
|
asymptotes\:f(x)=\frac{4x^{2}-9}{6x-9}
|
perpendicular 3x-8y=3
|
perpendicular\:3x-8y=3
|