inverse of f(x)=9+(6+x)^{1/2}
|
inverse\:f(x)=9+(6+x)^{\frac{1}{2}}
|
inflection points of x^2+4x+2
|
inflection\:points\:x^{2}+4x+2
|
domain of X^2
|
domain\:X^{2}
|
domain of f(x)=(sqrt(5-x))-(sqrt(x^2-4))
|
domain\:f(x)=(\sqrt{5-x})-(\sqrt{x^{2}-4})
|
intercepts of f(x)=2x^2-6x+10
|
intercepts\:f(x)=2x^{2}-6x+10
|
slope intercept of 5x+3y=12
|
slope\:intercept\:5x+3y=12
|
domain of f(x)=(6x)/6
|
domain\:f(x)=\frac{6x}{6}
|
domain of x^2-2x
|
domain\:x^{2}-2x
|
domain of f(x)= 1/2 x-9/2
|
domain\:f(x)=\frac{1}{2}x-\frac{9}{2}
|
range of 2+sqrt(3+2x-x^2)
|
range\:2+\sqrt{3+2x-x^{2}}
|
periodicity of f(x)=-cos((2x)/5)
|
periodicity\:f(x)=-\cos(\frac{2x}{5})
|
inverse of f(x)=(x-7)^2+8
|
inverse\:f(x)=(x-7)^{2}+8
|
intercepts of f(x)= 6/7 x-2
|
intercepts\:f(x)=\frac{6}{7}x-2
|
midpoint (1,6)(0,8)
|
midpoint\:(1,6)(0,8)
|
slope of f(x)=10x-5
|
slope\:f(x)=10x-5
|
range of (-4)/(x^2)+1
|
range\:\frac{-4}{x^{2}}+1
|
domain of f(x)=(sqrt(1+x))/(7-x)
|
domain\:f(x)=\frac{\sqrt{1+x}}{7-x}
|
extreme points of f(x)=3x^4-18x^2
|
extreme\:points\:f(x)=3x^{4}-18x^{2}
|
inverse of f(x)=2+sqrt(6+11x)
|
inverse\:f(x)=2+\sqrt{6+11x}
|
asymptotes of f(x)= 1/4 tan(6x)
|
asymptotes\:f(x)=\frac{1}{4}\tan(6x)
|
range of (x-1)^2+6
|
range\:(x-1)^{2}+6
|
extreme points of f(x)=7x+5/(x+2)
|
extreme\:points\:f(x)=7x+\frac{5}{x+2}
|
inflection points of x^4-7x^3
|
inflection\:points\:x^{4}-7x^{3}
|
domain of 5/(x-7)
|
domain\:\frac{5}{x-7}
|
periodicity of sin(7x)
|
periodicity\:\sin(7x)
|
perpendicular 6x-9y=-54
|
perpendicular\:6x-9y=-54
|
intercepts of f(x)=(x+3)/(x^2-9)
|
intercepts\:f(x)=\frac{x+3}{x^{2}-9}
|
asymptotes of f(x)=(6/5)^{-x}
|
asymptotes\:f(x)=(\frac{6}{5})^{-x}
|
inverse of f(x)=3x^5
|
inverse\:f(x)=3x^{5}
|
domain of f(x)=(x+5)/(x-1)
|
domain\:f(x)=\frac{x+5}{x-1}
|
intercepts of f(x)=2-3cos(pi x-3/2 pi)
|
intercepts\:f(x)=2-3\cos(\pi\:x-\frac{3}{2}\pi)
|
parity f(x)=6
|
parity\:f(x)=6
|
range of sin(x)cos(x)
|
range\:\sin(x)\cos(x)
|
intercepts of (x^2-5x+4)/(x+1)
|
intercepts\:\frac{x^{2}-5x+4}{x+1}
|
intercepts of f(x)= 6/(1+0.8e^{-2x)}
|
intercepts\:f(x)=\frac{6}{1+0.8e^{-2x}}
|
parity (x^n+2)/(x^{2n)-4}
|
parity\:\frac{x^{n}+2}{x^{2n}-4}
|
inflection points of (e^x-e^{-x})/3
|
inflection\:points\:\frac{e^{x}-e^{-x}}{3}
|
inflection points of f(x)=(e^x)/(6+e^x)
|
inflection\:points\:f(x)=\frac{e^{x}}{6+e^{x}}
|
inverse of f(x)=3log_{3}(x+3)+1
|
inverse\:f(x)=3\log_{3}(x+3)+1
|
extreme points of f(x)=2x^{4x}
|
extreme\:points\:f(x)=2x^{4x}
|
domain of f(x)=-2(x+3)^2-1
|
domain\:f(x)=-2(x+3)^{2}-1
|
inverse of f(x)=log_{6}(2x)+log_{6}(3)
|
inverse\:f(x)=\log_{6}(2x)+\log_{6}(3)
|
inverse of f(x)=x^2-7x
|
inverse\:f(x)=x^{2}-7x
|
inverse of f(x)= x/5-3/5
|
inverse\:f(x)=\frac{x}{5}-\frac{3}{5}
|
parallel-2/5 x+4
|
parallel\:-\frac{2}{5}x+4
|
inverse of f(x)=2sqrt(4-x)
|
inverse\:f(x)=2\sqrt{4-x}
|
domain of f(x)=sqrt(5-x)-sqrt(x^2-9)
|
domain\:f(x)=\sqrt{5-x}-\sqrt{x^{2}-9}
|
parallel y=-x+5(-1,-8)
|
parallel\:y=-x+5(-1,-8)
|
parity f(x)=-2x^2
|
parity\:f(x)=-2x^{2}
|
slope of =4
|
slope\:=4
|
extreme points of f(x)=x^3-27x+8
|
extreme\:points\:f(x)=x^{3}-27x+8
|
inverse of f(x)= 2/(3x+2)
|
inverse\:f(x)=\frac{2}{3x+2}
|
range of 2/(x3+1)
|
range\:\frac{2}{x3+1}
|
periodicity of y=sec(-(pi)/4)
|
periodicity\:y=\sec(-\frac{\pi}{4})
|
f(x)=x^2+3x+2
|
f(x)=x^{2}+3x+2
|
inverse of sec^{-1}(1/x)
|
inverse\:\sec^{-1}(\frac{1}{x})
|
extreme points of f(x)= x/(x-3)
|
extreme\:points\:f(x)=\frac{x}{x-3}
|
inverse of-5x+3
|
inverse\:-5x+3
|
inflection points of f(x)= 8/((x-4)^3)
|
inflection\:points\:f(x)=\frac{8}{(x-4)^{3}}
|
midpoint (-15,8)(-4,11)
|
midpoint\:(-15,8)(-4,11)
|
slope intercept of 7x+2y=11
|
slope\:intercept\:7x+2y=11
|
inflection points of f(x)=4x^3-6x^2+8x-5
|
inflection\:points\:f(x)=4x^{3}-6x^{2}+8x-5
|
inverse of sqrt(3x-1)
|
inverse\:\sqrt{3x-1}
|
inverse of y=(e^x+e^{-x})/2
|
inverse\:y=\frac{e^{x}+e^{-x}}{2}
|
shift 4cos(3x-1/2 pi)
|
shift\:4\cos(3x-\frac{1}{2}\pi)
|
asymptotes of f(x)=(x^2-8x+15)/(x^2-1)
|
asymptotes\:f(x)=\frac{x^{2}-8x+15}{x^{2}-1}
|
domain of f(x)=1\div sqrt(2x+4)
|
domain\:f(x)=1\div\:\sqrt{2x+4}
|
inverse of f(x)=(4x-5)/3
|
inverse\:f(x)=\frac{4x-5}{3}
|
intercepts of (-3x)/(2x+5)
|
intercepts\:\frac{-3x}{2x+5}
|
asymptotes of f(x)=3^{x+1}-4
|
asymptotes\:f(x)=3^{x+1}-4
|
range of-tan(x+7)-3
|
range\:-\tan(x+7)-3
|
asymptotes of f(x)=((x^3))/((x^2-1))
|
asymptotes\:f(x)=\frac{(x^{3})}{(x^{2}-1)}
|
slope of y= 1/5 x+5
|
slope\:y=\frac{1}{5}x+5
|
amplitude of sin(8x)
|
amplitude\:\sin(8x)
|
domain of (5-x)/(x(x-3))
|
domain\:\frac{5-x}{x(x-3)}
|
line (-4,1),(3,1)
|
line\:(-4,1),(3,1)
|
slope intercept of-5/4
|
slope\:intercept\:-\frac{5}{4}
|
distance (4,5)(-2,-5)
|
distance\:(4,5)(-2,-5)
|
monotone intervals x^2+2x+1
|
monotone\:intervals\:x^{2}+2x+1
|
inflection points of f(x)=3cos^2(x)-6sin(x),[0,2pi]
|
inflection\:points\:f(x)=3\cos^{2}(x)-6\sin(x),[0,2\pi]
|
distance (3,8)(-1,1)
|
distance\:(3,8)(-1,1)
|
asymptotes of (50k^2+30k)/(30k^2-100k)
|
asymptotes\:\frac{50k^{2}+30k}{30k^{2}-100k}
|
midpoint (2,-2)(-4,6)
|
midpoint\:(2,-2)(-4,6)
|
inverse of f(x)=sqrt(4-3x)
|
inverse\:f(x)=\sqrt{4-3x}
|
inverse of \sqrt[3]{x}-8
|
inverse\:\sqrt[3]{x}-8
|
line 5x+2y-10=0
|
line\:5x+2y-10=0
|
domain of f(x)=log_{2}(1-|2-x|)
|
domain\:f(x)=\log_{2}(1-|2-x|)
|
asymptotes of e^{arctan(|x|)}
|
asymptotes\:e^{\arctan(|x|)}
|
domain of f(x)= x/(ln(x))
|
domain\:f(x)=\frac{x}{\ln(x)}
|
inverse of f(x)=3+(10+x)^{1/2}
|
inverse\:f(x)=3+(10+x)^{\frac{1}{2}}
|
slope of y= 1/3 x
|
slope\:y=\frac{1}{3}x
|
midpoint (-21,-14)(13,16)
|
midpoint\:(-21,-14)(13,16)
|
extreme points of f(x)= 1/9 x^4-4/9 x^3
|
extreme\:points\:f(x)=\frac{1}{9}x^{4}-\frac{4}{9}x^{3}
|
asymptotes of f(x)=(6x-1)/(3x+6)
|
asymptotes\:f(x)=\frac{6x-1}{3x+6}
|
extreme points of f(x)=x^4+4x^3
|
extreme\:points\:f(x)=x^{4}+4x^{3}
|
intercepts of x^2+4x+5
|
intercepts\:x^{2}+4x+5
|
domain of f(x)=x^3+2x^2
|
domain\:f(x)=x^{3}+2x^{2}
|
intercepts of f(x)=2x-4y=9
|
intercepts\:f(x)=2x-4y=9
|
inverse of f(x)=\sqrt[3]{x-5}
|
inverse\:f(x)=\sqrt[3]{x-5}
|
intercepts of y=2x^2-3x+4
|
intercepts\:y=2x^{2}-3x+4
|