asymptotes of e^{-x}-2
|
asymptotes\:e^{-x}-2
|
domain of sqrt(2-\sqrt{p)}
|
domain\:\sqrt{2-\sqrt{p}}
|
domain of f(x)=(sqrt(x))/((x+3)(x-2))
|
domain\:f(x)=\frac{\sqrt{x}}{(x+3)(x-2)}
|
inverse of g(x)=2x
|
inverse\:g(x)=2x
|
distance (-2,-3)(-10,0)
|
distance\:(-2,-3)(-10,0)
|
perpendicular y=-2x+8
|
perpendicular\:y=-2x+8
|
intercepts of f(x)=3x^2-18x+26
|
intercepts\:f(x)=3x^{2}-18x+26
|
inverse of x/(x^2-6x+8)
|
inverse\:\frac{x}{x^{2}-6x+8}
|
parallel Y=-1/3 x+6,\at (-6,0)
|
parallel\:Y=-\frac{1}{3}x+6,\at\:(-6,0)
|
intercepts of f(x)=2x^3-2x^2-7x+3
|
intercepts\:f(x)=2x^{3}-2x^{2}-7x+3
|
asymptotes of f(x)=((2x^2))/((x^2+5x+4))
|
asymptotes\:f(x)=\frac{(2x^{2})}{(x^{2}+5x+4)}
|
extreme points of sin(t)-(cos(t)+sin(t))
|
extreme\:points\:\sin(t)-(\cos(t)+\sin(t))
|
asymptotes of f(x)=3arctan(2x)
|
asymptotes\:f(x)=3\arctan(2x)
|
inverse of f(x)=(x+4)/(x+6)
|
inverse\:f(x)=\frac{x+4}{x+6}
|
parity tan(x)sin(x)+sec(x)cos(2)(x)
|
parity\:\tan(x)\sin(x)+\sec(x)\cos(2)(x)
|
range of f(x)=x^2+6x+3
|
range\:f(x)=x^{2}+6x+3
|
parallel x-3y+3
|
parallel\:x-3y+3
|
asymptotes of 4^{-x}+4
|
asymptotes\:4^{-x}+4
|
range of 3(x-2)^2+4
|
range\:3(x-2)^{2}+4
|
domain of g(x)=sqrt(x)
|
domain\:g(x)=\sqrt{x}
|
inverse of f(x)=log_{2}(x-3)
|
inverse\:f(x)=\log_{2}(x-3)
|
inverse of f(x)=(x+3)/4
|
inverse\:f(x)=\frac{x+3}{4}
|
line (98,)(,63)
|
line\:(98,)(,63)
|
range of f(x)=(x^2)/(x^2-16)
|
range\:f(x)=\frac{x^{2}}{x^{2}-16}
|
parallel x=-5(6,-6)
|
parallel\:x=-5(6,-6)
|
inverse of f(x)=17+\sqrt[3]{x}
|
inverse\:f(x)=17+\sqrt[3]{x}
|
inverse of f(x)=(4-x)^3
|
inverse\:f(x)=(4-x)^{3}
|
inverse of f(x)= 8/x
|
inverse\:f(x)=\frac{8}{x}
|
inverse of 1+1/(x-1)
|
inverse\:1+\frac{1}{x-1}
|
range of 3+(8+x)^{1/2}
|
range\:3+(8+x)^{\frac{1}{2}}
|
domain of f(x)= 2/(6x^2+13x-5)
|
domain\:f(x)=\frac{2}{6x^{2}+13x-5}
|
parity 3cos(4x)
|
parity\:3\cos(4x)
|
midpoint (6,8)(10,4)
|
midpoint\:(6,8)(10,4)
|
domain of (-3x^2-12x-9)/(x^2+5x+4)
|
domain\:\frac{-3x^{2}-12x-9}{x^{2}+5x+4}
|
range of sqrt(49-x^2)
|
range\:\sqrt{49-x^{2}}
|
inverse of f(x)=80-4.9t^2
|
inverse\:f(x)=80-4.9t^{2}
|
asymptotes of (4x^2+1)/(2x^2+5x-3)
|
asymptotes\:\frac{4x^{2}+1}{2x^{2}+5x-3}
|
shift y=4cos(pi x+(pi)/2)
|
shift\:y=4\cos(\pi\:x+\frac{\pi}{2})
|
domain of (x+2)/x
|
domain\:\frac{x+2}{x}
|
intercepts of f(x)=y=(x-1)^2+2
|
intercepts\:f(x)=y=(x-1)^{2}+2
|
intercepts of f(x)=y=x-4
|
intercepts\:f(x)=y=x-4
|
domain of f(x)=sqrt(6/(x-5))
|
domain\:f(x)=\sqrt{\frac{6}{x-5}}
|
slope intercept of 2x+y=4
|
slope\:intercept\:2x+y=4
|
range of (x^2+5)/(x^2-3)
|
range\:\frac{x^{2}+5}{x^{2}-3}
|
inverse of (-3x)/(3x-4)
|
inverse\:\frac{-3x}{3x-4}
|
inverse of f(x)=(9x-8)/(2-x)
|
inverse\:f(x)=\frac{9x-8}{2-x}
|
distance (-2,-6),(-7,1)
|
distance\:(-2,-6),(-7,1)
|
symmetry y=x^2-8x-6
|
symmetry\:y=x^{2}-8x-6
|
domain of f(x)= x/(1+2x^2)
|
domain\:f(x)=\frac{x}{1+2x^{2}}
|
intercepts of f(x)=(15-3x)/(x^2-8x+15)
|
intercepts\:f(x)=\frac{15-3x}{x^{2}-8x+15}
|
inverse of f(x)= 1/2 x-7
|
inverse\:f(x)=\frac{1}{2}x-7
|
parity f(x)=-2x^5-2x^3-x
|
parity\:f(x)=-2x^{5}-2x^{3}-x
|
range of f(x)=x+6
|
range\:f(x)=x+6
|
inverse of f(x)=y=x^2-1
|
inverse\:f(x)=y=x^{2}-1
|
extreme points of f(x)=2-4x+2x^2
|
extreme\:points\:f(x)=2-4x+2x^{2}
|
domain of f(x)=8x-5
|
domain\:f(x)=8x-5
|
midpoint (-7/2 ,-7/2)(-1/2 ,-3/2)
|
midpoint\:(-\frac{7}{2},-\frac{7}{2})(-\frac{1}{2},-\frac{3}{2})
|
inverse of f(x)=(2x)/3-1
|
inverse\:f(x)=\frac{2x}{3}-1
|
asymptotes of (2x+6)/(x^2+4x+3)
|
asymptotes\:\frac{2x+6}{x^{2}+4x+3}
|
line Y= 3/4 x-4
|
line\:Y=\frac{3}{4}x-4
|
asymptotes of (x^3+8)/(x^2+5x)
|
asymptotes\:\frac{x^{3}+8}{x^{2}+5x}
|
inverse of f(x)=x^2-5
|
inverse\:f(x)=x^{2}-5
|
extreme points of f(x)=x(x-4)^3
|
extreme\:points\:f(x)=x(x-4)^{3}
|
inverse of f(x)=-4+7/2 x
|
inverse\:f(x)=-4+\frac{7}{2}x
|
slope intercept of 2x-3y=-12
|
slope\:intercept\:2x-3y=-12
|
midpoint (-3,-9)(0,-12)
|
midpoint\:(-3,-9)(0,-12)
|
range of \sqrt[3]{x-12}
|
range\:\sqrt[3]{x-12}
|
inflection points of f(x)=sin^2(2x)
|
inflection\:points\:f(x)=\sin^{2}(2x)
|
intercepts of f(x)=-x^2+4
|
intercepts\:f(x)=-x^{2}+4
|
slope intercept of 4y+5=-7
|
slope\:intercept\:4y+5=-7
|
asymptotes of f(x)=7cos((pi)/2 x)
|
asymptotes\:f(x)=7\cos(\frac{\pi}{2}x)
|
domain of f(x)= x/(\sqrt[4]{9-x^2)}
|
domain\:f(x)=\frac{x}{\sqrt[4]{9-x^{2}}}
|
line (0,5)(-3,0)
|
line\:(0,5)(-3,0)
|
domain of f(x)=9+(4+x)^{1/2}
|
domain\:f(x)=9+(4+x)^{\frac{1}{2}}
|
domain of f(x)=(x+3)/(sqrt(x))
|
domain\:f(x)=\frac{x+3}{\sqrt{x}}
|
asymptotes of f(x)=(12x^2+3)/(3x^2-2x+1)
|
asymptotes\:f(x)=\frac{12x^{2}+3}{3x^{2}-2x+1}
|
monotone intervals f(x)=3x^2+4x+1
|
monotone\:intervals\:f(x)=3x^{2}+4x+1
|
inverse of f(x)=-3x-3
|
inverse\:f(x)=-3x-3
|
intercepts of (x+2)/(x^2-3x-10)
|
intercepts\:\frac{x+2}{x^{2}-3x-10}
|
inverse of f(x)=(2x+1)/(5x+3)
|
inverse\:f(x)=\frac{2x+1}{5x+3}
|
symmetry y=-3x^2+9x
|
symmetry\:y=-3x^{2}+9x
|
inverse of f(x)=(x+4)/(x-7)
|
inverse\:f(x)=\frac{x+4}{x-7}
|
range of-1
|
range\:-1
|
intercepts of f(x)=x^2-2
|
intercepts\:f(x)=x^{2}-2
|
extreme points of f(x)= 1/(1+x)
|
extreme\:points\:f(x)=\frac{1}{1+x}
|
inverse of y= 7/((x-1))
|
inverse\:y=\frac{7}{(x-1)}
|
periodicity of f(x)= 1/3 sin(x+(pi)/4)
|
periodicity\:f(x)=\frac{1}{3}\sin(x+\frac{\pi}{4})
|
inverse of f(x)=-5-5/4 x
|
inverse\:f(x)=-5-\frac{5}{4}x
|
asymptotes of f(x)=(2x^2-5x+7)/(x-2)
|
asymptotes\:f(x)=\frac{2x^{2}-5x+7}{x-2}
|
asymptotes of f(x)=(12)/x
|
asymptotes\:f(x)=\frac{12}{x}
|
domain of f(x)=(x^2+x+1)/(x^2-7x+12)
|
domain\:f(x)=\frac{x^{2}+x+1}{x^{2}-7x+12}
|
domain of f(x)=1+log_{3}(x^2-9)
|
domain\:f(x)=1+\log_{3}(x^{2}-9)
|
extreme points of f(x)=(e^x-e^{-x})/3
|
extreme\:points\:f(x)=\frac{e^{x}-e^{-x}}{3}
|
intercepts of 2log_{3}(-x+8)-1
|
intercepts\:2\log_{3}(-x+8)-1
|
critical points of ln(x-1)
|
critical\:points\:\ln(x-1)
|
line y=5
|
line\:y=5
|
inverse of f(x)=-sqrt(x-1)
|
inverse\:f(x)=-\sqrt{x-1}
|
domain of f(x)=sqrt(2+x-x^2)
|
domain\:f(x)=\sqrt{2+x-x^{2}}
|
domain of y=sqrt(2x-1)
|
domain\:y=\sqrt{2x-1}
|
slope intercept of 8x-y=4
|
slope\:intercept\:8x-y=4
|