domain of log_{5}(x-6)+2
|
domain\:\log_{5}(x-6)+2
|
extreme points of y=x^3+y^3-x-y-2=0
|
extreme\:points\:y=x^{3}+y^{3}-x-y-2=0
|
extreme points of (x-1)^2(x-2)^3
|
extreme\:points\:(x-1)^{2}(x-2)^{3}
|
asymptotes of f(x)=-3x^2-12x\div 5x^2
|
asymptotes\:f(x)=-3x^{2}-12x\div\:5x^{2}
|
periodicity of f(x)=sin(-(2x)/3)
|
periodicity\:f(x)=\sin(-\frac{2x}{3})
|
asymptotes of f(x)=(3e^x)/(e^x-2)
|
asymptotes\:f(x)=\frac{3e^{x}}{e^{x}-2}
|
extreme points of f(x)=x^3-8x^2+2
|
extreme\:points\:f(x)=x^{3}-8x^{2}+2
|
asymptotes of f(x)=(3x)/(x^2-3)
|
asymptotes\:f(x)=\frac{3x}{x^{2}-3}
|
slope of f(x)=7-5x
|
slope\:f(x)=7-5x
|
asymptotes of f(x)=tan(4x+pi)
|
asymptotes\:f(x)=\tan(4x+\pi)
|
parallel y=4x-5
|
parallel\:y=4x-5
|
asymptotes of f(x)=(5x^2-3)/(x+5)
|
asymptotes\:f(x)=\frac{5x^{2}-3}{x+5}
|
inverse of f(x)= x/(-8x+3)
|
inverse\:f(x)=\frac{x}{-8x+3}
|
inverse of 7/(9x^2-16)
|
inverse\:\frac{7}{9x^{2}-16}
|
range of x^2+x+1
|
range\:x^{2}+x+1
|
asymptotes of f(x)=(x^2+4)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}+4}{x-3}
|
critical points of f(x)=(x+7)/(x+4)
|
critical\:points\:f(x)=\frac{x+7}{x+4}
|
domain of f(x)=6x-12-3x^2
|
domain\:f(x)=6x-12-3x^{2}
|
inverse of y=12*((3)(2))/(sqrt(4))
|
inverse\:y=12\cdot\:\frac{(3)(2)}{\sqrt{4}}
|
slope of 12x-3y=-3
|
slope\:12x-3y=-3
|
domain of (x+5)/(x-3)
|
domain\:\frac{x+5}{x-3}
|
inverse of f(x)=(x+5)^3
|
inverse\:f(x)=(x+5)^{3}
|
midpoint (6,9sqrt(7))(-4,-7sqrt(7))
|
midpoint\:(6,9\sqrt{7})(-4,-7\sqrt{7})
|
shift-5sin(6x+(pi)/2)
|
shift\:-5\sin(6x+\frac{\pi}{2})
|
inverse of f(x)=12-2x
|
inverse\:f(x)=12-2x
|
inverse of f(x)= 3/4 x
|
inverse\:f(x)=\frac{3}{4}x
|
domain of y=sqrt(x-1)
|
domain\:y=\sqrt{x-1}
|
asymptotes of f(x)=(2x+1)/x
|
asymptotes\:f(x)=\frac{2x+1}{x}
|
domain of f(x)=(x^3+3)/(x^3-8)
|
domain\:f(x)=\frac{x^{3}+3}{x^{3}-8}
|
extreme points of f(x)=(12)/(x^2+4)
|
extreme\:points\:f(x)=\frac{12}{x^{2}+4}
|
asymptotes of f(x)= 3/(x-5)
|
asymptotes\:f(x)=\frac{3}{x-5}
|
domain of f(x)=sqrt(3x+2)
|
domain\:f(x)=\sqrt{3x+2}
|
slope intercept of 2y=1x+8
|
slope\:intercept\:2y=1x+8
|
inverse of f(x)= 1/(x-10)
|
inverse\:f(x)=\frac{1}{x-10}
|
inverse of 6((x-4)^3)/2
|
inverse\:6\frac{(x-4)^{3}}{2}
|
inverse of f(x)=x+7
|
inverse\:f(x)=x+7
|
slope intercept of y+3=-1/3 (x+1)
|
slope\:intercept\:y+3=-\frac{1}{3}(x+1)
|
perpendicular 2
|
perpendicular\:2
|
domain of f(x)=(2x^2)/(x^2-4)
|
domain\:f(x)=\frac{2x^{2}}{x^{2}-4}
|
domain of sin(6x)
|
domain\:\sin(6x)
|
extreme points of f(x)=x^3+2x^2+x-7
|
extreme\:points\:f(x)=x^{3}+2x^{2}+x-7
|
inverse of f(x)=x^2-4
|
inverse\:f(x)=x^{2}-4
|
inverse of cot(x)
|
inverse\:\cot(x)
|
domain of sqrt((x^2+5x+6)/(x+15))
|
domain\:\sqrt{\frac{x^{2}+5x+6}{x+15}}
|
range of f(x)=x^2-6x+13
|
range\:f(x)=x^{2}-6x+13
|
domain of f(x)= 1/(sqrt(|x^2-5x+6|))
|
domain\:f(x)=\frac{1}{\sqrt{|x^{2}-5x+6|}}
|
domain of f(x)= 1/(2x+4)
|
domain\:f(x)=\frac{1}{2x+4}
|
domain of (2x^2+10x+12)/(x^2+2x-3)
|
domain\:\frac{2x^{2}+10x+12}{x^{2}+2x-3}
|
domain of-1/((x-5)^4)
|
domain\:-\frac{1}{(x-5)^{4}}
|
domain of \sqrt[4]{x^2+3x}
|
domain\:\sqrt[4]{x^{2}+3x}
|
slope of y=1
|
slope\:y=1
|
asymptotes of f(x)=(x+8)/(x+6)
|
asymptotes\:f(x)=\frac{x+8}{x+6}
|
domain of f(x)=\sqrt[4]{x+8}
|
domain\:f(x)=\sqrt[4]{x+8}
|
asymptotes of (5x+20)/(x^2+x-12)
|
asymptotes\:\frac{5x+20}{x^{2}+x-12}
|
domain of f(x)= 1/(4x-20)
|
domain\:f(x)=\frac{1}{4x-20}
|
domain of f(x)=10sqrt(x-1)
|
domain\:f(x)=10\sqrt{x-1}
|
inverse of f(x)=-x^5
|
inverse\:f(x)=-x^{5}
|
slope intercept of 8x-3y=-5
|
slope\:intercept\:8x-3y=-5
|
cube root of x
|
\sqrt[3]{x}
|
midpoint (-3,5)(0,8)
|
midpoint\:(-3,5)(0,8)
|
slope of y= 1/4 x-1
|
slope\:y=\frac{1}{4}x-1
|
inverse of g(x)=3+x^3
|
inverse\:g(x)=3+x^{3}
|
parity ((1-sec(pi x)))/(x-1)
|
parity\:\frac{(1-\sec(\pi\:x))}{x-1}
|
line (-1,-2)(3,0)
|
line\:(-1,-2)(3,0)
|
extreme points of f(x)=x^2e^{-7x}
|
extreme\:points\:f(x)=x^{2}e^{-7x}
|
asymptotes of f(x)=(x+5)/(x+2)
|
asymptotes\:f(x)=\frac{x+5}{x+2}
|
slope of 2x-y=0
|
slope\:2x-y=0
|
range of f(x)=(-3x-5)/(2x^2-4x)
|
range\:f(x)=\frac{-3x-5}{2x^{2}-4x}
|
asymptotes of f(x)=(x^2+3x+2)/(-3x-12)
|
asymptotes\:f(x)=\frac{x^{2}+3x+2}{-3x-12}
|
range of f(x)=sqrt(6/(x+5)+x)
|
range\:f(x)=\sqrt{\frac{6}{x+5}+x}
|
symmetry x^2+y^2=25
|
symmetry\:x^{2}+y^{2}=25
|
extreme points of f(x)= 1/3 x^3-x^2-4
|
extreme\:points\:f(x)=\frac{1}{3}x^{3}-x^{2}-4
|
shift 7cos(10x-6pi)+8
|
shift\:7\cos(10x-6\pi)+8
|
domain of x/(x+7)
|
domain\:\frac{x}{x+7}
|
monotone intervals s^3
|
monotone\:intervals\:s^{3}
|
line m=-5,\at (3,9)
|
line\:m=-5,\at\:(3,9)
|
inverse of e^{2ln(3x)}
|
inverse\:e^{2\ln(3x)}
|
range of x/(x+1)
|
range\:\frac{x}{x+1}
|
domain of (4+x)/(1-4x)
|
domain\:\frac{4+x}{1-4x}
|
slope intercept of (7x-4y)/4 =x+2
|
slope\:intercept\:\frac{7x-4y}{4}=x+2
|
domain of (x^2-2)/(x^2-x-2)
|
domain\:\frac{x^{2}-2}{x^{2}-x-2}
|
perpendicular 2x+6y=12,\at (1,3)
|
perpendicular\:2x+6y=12,\at\:(1,3)
|
domain of f(x)= 9/(100-x^2)
|
domain\:f(x)=\frac{9}{100-x^{2}}
|
range of f(x)= 1/(sqrt(3-x))
|
range\:f(x)=\frac{1}{\sqrt{3-x}}
|
periodicity of 3cot(1/2 x)-2
|
periodicity\:3\cot(\frac{1}{2}x)-2
|
inverse of x/2
|
inverse\:\frac{x}{2}
|
periodicity of y=tan(4x)
|
periodicity\:y=\tan(4x)
|
asymptotes of f(x)=(x^2+2)/(7x-4x^2)
|
asymptotes\:f(x)=\frac{x^{2}+2}{7x-4x^{2}}
|
domain of f(x)=(2x+3)/(3x^2+x-10)
|
domain\:f(x)=\frac{2x+3}{3x^{2}+x-10}
|
domain of f(x)=9x^2
|
domain\:f(x)=9x^{2}
|
range of sqrt(x+2)-3
|
range\:\sqrt{x+2}-3
|
inverse of f(x)=(x+7)/(x-7)
|
inverse\:f(x)=\frac{x+7}{x-7}
|
slope intercept of x-2y=7
|
slope\:intercept\:x-2y=7
|
critical points of x^5-5x^2-20x-2
|
critical\:points\:x^{5}-5x^{2}-20x-2
|
inverse of f(x)=sqrt((x-5)/3)
|
inverse\:f(x)=\sqrt{\frac{x-5}{3}}
|
slope of-5/2
|
slope\:-\frac{5}{2}
|
inverse of f(x)=-(x+1)^2-3
|
inverse\:f(x)=-(x+1)^{2}-3
|
domain of (x-1)/(x^2-x-12)
|
domain\:\frac{x-1}{x^{2}-x-12}
|
asymptotes of f(x)= 4/(x^2+2x-8)
|
asymptotes\:f(x)=\frac{4}{x^{2}+2x-8}
|
range of-2sin(x/2-(pi)/3)+5
|
range\:-2\sin(\frac{x}{2}-\frac{\pi}{3})+5
|