1/(x-1)
|
\frac{1}{x-1}
|
inverse of f(x)=2x^2+16x+5
|
inverse\:f(x)=2x^{2}+16x+5
|
inverse of f(x)=((x^7))/3+3
|
inverse\:f(x)=\frac{(x^{7})}{3}+3
|
domain of f(x)=-x^4-2x^3+10x^2+4x-16
|
domain\:f(x)=-x^{4}-2x^{3}+10x^{2}+4x-16
|
asymptotes of 5csc(10x)
|
asymptotes\:5\csc(10x)
|
domain of f(x)=-x^2+4x-1
|
domain\:f(x)=-x^{2}+4x-1
|
inflection points of x^3-6x^2-36x
|
inflection\:points\:x^{3}-6x^{2}-36x
|
critical points of x^{3/2}-3x^{5/2}
|
critical\:points\:x^{\frac{3}{2}}-3x^{\frac{5}{2}}
|
symmetry 2x^2+32x+136
|
symmetry\:2x^{2}+32x+136
|
intercepts of f(x)=(sqrt(x))/2
|
intercepts\:f(x)=\frac{\sqrt{x}}{2}
|
domain of f(x)=(4x^2-1)/(|2x+1|)
|
domain\:f(x)=\frac{4x^{2}-1}{|2x+1|}
|
inverse of f(x)= x/(7-x)
|
inverse\:f(x)=\frac{x}{7-x}
|
inverse of f(x)=8-\sqrt[3]{x}
|
inverse\:f(x)=8-\sqrt[3]{x}
|
inverse of f(x)=(5+7x)/2
|
inverse\:f(x)=\frac{5+7x}{2}
|
line (2.8425,-0.812),(2.8697,-0.968)
|
line\:(2.8425,-0.812),(2.8697,-0.968)
|
inflection points of (x+2)/(2x+1)
|
inflection\:points\:\frac{x+2}{2x+1}
|
domain of f(x)=(sqrt(x-5))/(x-6)
|
domain\:f(x)=\frac{\sqrt{x-5}}{x-6}
|
line (3,6)(9,8)
|
line\:(3,6)(9,8)
|
parity y=x^3+2x^2-1
|
parity\:y=x^{3}+2x^{2}-1
|
shift 3sin(1/4 x-5/3 pi)-3
|
shift\:3\sin(\frac{1}{4}x-\frac{5}{3}\pi)-3
|
inverse of y=sqrt(x+6)
|
inverse\:y=\sqrt{x+6}
|
inverse of f(x)=-(x-1)^3+2
|
inverse\:f(x)=-(x-1)^{3}+2
|
inverse of f(x)=g(x)=-3(x+6)
|
inverse\:f(x)=g(x)=-3(x+6)
|
extreme points of f(x)=x^3-2x^2-3x-2
|
extreme\:points\:f(x)=x^{3}-2x^{2}-3x-2
|
domain of 5/9 (x-32)
|
domain\:\frac{5}{9}(x-32)
|
perpendicular y= x/4-1,\at (-4,5)
|
perpendicular\:y=\frac{x}{4}-1,\at\:(-4,5)
|
distance (-5,6)(-2,3)
|
distance\:(-5,6)(-2,3)
|
range of y=3cos(theta+pi)
|
range\:y=3\cos(\theta+\pi)
|
periodicity of cos(6x)
|
periodicity\:\cos(6x)
|
inverse of f(x)=2+x^3
|
inverse\:f(x)=2+x^{3}
|
domain of f(x)=sqrt(9-3x)
|
domain\:f(x)=\sqrt{9-3x}
|
domain of 5x/(2x^2+8)
|
domain\:5x/(2x^{2}+8)
|
inverse of f(x)=2x^2-5x+1
|
inverse\:f(x)=2x^{2}-5x+1
|
domain of (3x)/(x-1)
|
domain\:\frac{3x}{x-1}
|
asymptotes of y=(x^2-4)/(x^2+4)
|
asymptotes\:y=\frac{x^{2}-4}{x^{2}+4}
|
range of g(x)=5x^2+2
|
range\:g(x)=5x^{2}+2
|
inverse of f(x)=(4t)/(3t-8)
|
inverse\:f(x)=\frac{4t}{3t-8}
|
domain of f(x)=sqrt(7x)
|
domain\:f(x)=\sqrt{7x}
|
inverse of y=(8)^x
|
inverse\:y=(8)^{x}
|
inverse of f(x)= 2/x+3
|
inverse\:f(x)=\frac{2}{x}+3
|
range of f(x)=5x+sqrt(x^2+6)
|
range\:f(x)=5x+\sqrt{x^{2}+6}
|
domain of f(x)=sqrt(6T+30)
|
domain\:f(x)=\sqrt{6T+30}
|
shift 4cos(5pi x-(pi)/4)
|
shift\:4\cos(5\pi\:x-\frac{\pi}{4})
|
critical points of f(x)=-0.0002x+5.5
|
critical\:points\:f(x)=-0.0002x+5.5
|
slope of x+y=5
|
slope\:x+y=5
|
inflection points of f(x)=ln(1+x^3)
|
inflection\:points\:f(x)=\ln(1+x^{3})
|
inflection points of f(x)=-x^3+2x^2+1
|
inflection\:points\:f(x)=-x^{3}+2x^{2}+1
|
perpendicular y= 1/4 x-3
|
perpendicular\:y=\frac{1}{4}x-3
|
slope intercept of x+y=3
|
slope\:intercept\:x+y=3
|
distance (-2,7.7)(3,-2.3)
|
distance\:(-2,7.7)(3,-2.3)
|
domain of f(x)=sqrt(1-\sqrt{4-x^2)}
|
domain\:f(x)=\sqrt{1-\sqrt{4-x^{2}}}
|
domain of f(x)= 1/8
|
domain\:f(x)=\frac{1}{8}
|
extreme points of f(x)=-1+4x-x^3
|
extreme\:points\:f(x)=-1+4x-x^{3}
|
critical points of f(x)=x^4-128x^2+4096
|
critical\:points\:f(x)=x^{4}-128x^{2}+4096
|
intercepts of f(x)=(x^2-12x+35)/(x-5)
|
intercepts\:f(x)=\frac{x^{2}-12x+35}{x-5}
|
inverse of pi r^2
|
inverse\:\pi\:r^{2}
|
symmetry y^4=x^3+9
|
symmetry\:y^{4}=x^{3}+9
|
inverse of (2x)/(x-1)
|
inverse\:\frac{2x}{x-1}
|
inverse of f(x)=log_{4}(x-2)
|
inverse\:f(x)=\log_{4}(x-2)
|
periodicity of f(x)=-4+2sin(x/6)
|
periodicity\:f(x)=-4+2\sin(\frac{x}{6})
|
range of f(x)=(5x)/(2x+3)
|
range\:f(x)=\frac{5x}{2x+3}
|
domain of f(x)=5(x/(x+3))-3
|
domain\:f(x)=5(\frac{x}{x+3})-3
|
range of f(x)=5x^2
|
range\:f(x)=5x^{2}
|
intercepts of y=x^2-3x+5
|
intercepts\:y=x^{2}-3x+5
|
midpoint (0,-8)(-7,-4)
|
midpoint\:(0,-8)(-7,-4)
|
domain of f(x)=-sqrt(x-3)
|
domain\:f(x)=-\sqrt{x-3}
|
perpendicular-4x-9y=2
|
perpendicular\:-4x-9y=2
|
domain of f(x)=((x+1))/((x^2+1))
|
domain\:f(x)=\frac{(x+1)}{(x^{2}+1)}
|
range of x^2-x+3
|
range\:x^{2}-x+3
|
critical points of (x^4)/4-x^2+1
|
critical\:points\:\frac{x^{4}}{4}-x^{2}+1
|
line 3x+5
|
line\:3x+5
|
critical points of x+1/x
|
critical\:points\:x+\frac{1}{x}
|
symmetry x^2+y-9=0
|
symmetry\:x^{2}+y-9=0
|
domain of 1/(5+3x)
|
domain\:\frac{1}{5+3x}
|
inverse of f(x)=-2x^2+4x-1
|
inverse\:f(x)=-2x^{2}+4x-1
|
inverse of f(x)=8-7e^x
|
inverse\:f(x)=8-7e^{x}
|
distance (-2,3)(-2,-3)
|
distance\:(-2,3)(-2,-3)
|
domain of 5/x+7/(x+7)
|
domain\:\frac{5}{x}+\frac{7}{x+7}
|
line y= 1/2 x+3
|
line\:y=\frac{1}{2}x+3
|
symmetry y=3x
|
symmetry\:y=3x
|
domain of 9+(8+x)^{1/2}
|
domain\:9+(8+x)^{\frac{1}{2}}
|
domain of f(x)=(x^2+2x+1)/(x-3)
|
domain\:f(x)=\frac{x^{2}+2x+1}{x-3}
|
domain of y=4x^2
|
domain\:y=4x^{2}
|
midpoint (-2,4)(13,10)
|
midpoint\:(-2,4)(13,10)
|
critical points of (x^2)/2+1/x
|
critical\:points\:\frac{x^{2}}{2}+\frac{1}{x}
|
inverse of f(x)= 1/3 (x+1)^2-2
|
inverse\:f(x)=\frac{1}{3}(x+1)^{2}-2
|
critical points of f(x)= 3/(9-x^2)
|
critical\:points\:f(x)=\frac{3}{9-x^{2}}
|
inflection points of f(x)=x^4-50x^2+8
|
inflection\:points\:f(x)=x^{4}-50x^{2}+8
|
y=x^2+2x-8
|
y=x^{2}+2x-8
|
domain of f(x)= 2/(sqrt(x+3))
|
domain\:f(x)=\frac{2}{\sqrt{x+3}}
|
inverse of f(x)=(5x+4)/7
|
inverse\:f(x)=\frac{5x+4}{7}
|
midpoint (2,2)(-3,7)
|
midpoint\:(2,2)(-3,7)
|
inverse of f(x)=\sqrt[3]{x-1}
|
inverse\:f(x)=\sqrt[3]{x-1}
|
monotone intervals f(x)=y=-2x^2+x
|
monotone\:intervals\:f(x)=y=-2x^{2}+x
|
domain of f(x)=(6x)/(7-x)
|
domain\:f(x)=\frac{6x}{7-x}
|
inverse of f(x)=(x^2)/(16)
|
inverse\:f(x)=\frac{x^{2}}{16}
|
domain of f(x)=sqrt(-x^2-8x-7)-2
|
domain\:f(x)=\sqrt{-x^{2}-8x-7}-2
|
range of y=5+2e^x
|
range\:y=5+2e^{x}
|
slope of x=11
|
slope\:x=11
|
inverse of f(x)=0.25
|
inverse\:f(x)=0.25
|