asymptotes of f(x)=(x+4)/(x+1)
|
asymptotes\:f(x)=\frac{x+4}{x+1}
|
inverse of f(x)=(x+4)^2
|
inverse\:f(x)=(x+4)^{2}
|
inverse of f(x)=15x-1
|
inverse\:f(x)=15x-1
|
midpoint (-2,3)(8,-7)
|
midpoint\:(-2,3)(8,-7)
|
distance (-3,0)(-5,-4)
|
distance\:(-3,0)(-5,-4)
|
inverse of (x-2)^2-3
|
inverse\:(x-2)^{2}-3
|
inverse of f(x)=((x-1)/3)
|
inverse\:f(x)=(\frac{x-1}{3})
|
asymptotes of f(x)=3*2^x
|
asymptotes\:f(x)=3\cdot\:2^{x}
|
domain of f(x)=sqrt(x+7)
|
domain\:f(x)=\sqrt{x+7}
|
symmetry (2x^2)/(x^2-4)
|
symmetry\:\frac{2x^{2}}{x^{2}-4}
|
intercepts of f(x)=(x+4)^2(1-x)
|
intercepts\:f(x)=(x+4)^{2}(1-x)
|
domain of f(x)=\sqrt[3]{3-\sqrt[3]{3-x}}
|
domain\:f(x)=\sqrt[3]{3-\sqrt[3]{3-x}}
|
slope intercept of 6x-3y=12
|
slope\:intercept\:6x-3y=12
|
inverse of f(x)=(x^2-2)/(x^2+1)
|
inverse\:f(x)=\frac{x^{2}-2}{x^{2}+1}
|
intercepts of x/(x^2-6x+8)
|
intercepts\:\frac{x}{x^{2}-6x+8}
|
critical points of f(x)=2xsqrt(3x^2+3)
|
critical\:points\:f(x)=2x\sqrt{3x^{2}+3}
|
slope of 7x-2y=4
|
slope\:7x-2y=4
|
parity f(x)=2x^2-4x
|
parity\:f(x)=2x^{2}-4x
|
range of f(x)=(x^2+6x+11)/(2x^2+12x+18)
|
range\:f(x)=\frac{x^{2}+6x+11}{2x^{2}+12x+18}
|
critical points of f(x)=-x^2-3x-2
|
critical\:points\:f(x)=-x^{2}-3x-2
|
asymptotes of f(x)=7tan(0.4x)
|
asymptotes\:f(x)=7\tan(0.4x)
|
inverse of f(x)=(2x)/(x-1)
|
inverse\:f(x)=\frac{2x}{x-1}
|
asymptotes of f(x)=(-x+6)/(x^2-49)
|
asymptotes\:f(x)=\frac{-x+6}{x^{2}-49}
|
slope intercept of 2y-4x=-18
|
slope\:intercept\:2y-4x=-18
|
distance (1,1)(7,5)
|
distance\:(1,1)(7,5)
|
critical points of f(x)=(10)/(x^2+5)
|
critical\:points\:f(x)=\frac{10}{x^{2}+5}
|
domain of x/(sqrt(x)-9)
|
domain\:\frac{x}{\sqrt{x}-9}
|
domain of f(x)=(x-8)/(x+7)
|
domain\:f(x)=\frac{x-8}{x+7}
|
intercepts of (x^2+1)/(x^2-1)
|
intercepts\:\frac{x^{2}+1}{x^{2}-1}
|
distance (3,7)(6,5)
|
distance\:(3,7)(6,5)
|
inverse of f(x)=-(x-5)^2+2
|
inverse\:f(x)=-(x-5)^{2}+2
|
domain of f(x)=4-sqrt(2x-5)
|
domain\:f(x)=4-\sqrt{2x-5}
|
asymptotes of f(x)= x/((x-4)(x+2))
|
asymptotes\:f(x)=\frac{x}{(x-4)(x+2)}
|
domain of f(x)=7x^2+7x+9
|
domain\:f(x)=7x^{2}+7x+9
|
shift-5sin(2pi x+5)
|
shift\:-5\sin(2\pi\:x+5)
|
line y=-x
|
line\:y=-x
|
critical points of (x^3)/3+x^2-8x+20
|
critical\:points\:\frac{x^{3}}{3}+x^{2}-8x+20
|
periodicity of f(x)=5sec(3x-(pi)/2)
|
periodicity\:f(x)=5\sec(3x-\frac{\pi}{2})
|
domain of f(x)= 1/(sqrt(x-15))
|
domain\:f(x)=\frac{1}{\sqrt{x-15}}
|
inverse of f(x)=(2x-1)/(2x+3)
|
inverse\:f(x)=\frac{2x-1}{2x+3}
|
domain of f(x)=ln(x/(1-x^2))
|
domain\:f(x)=\ln(\frac{x}{1-x^{2}})
|
slope of y=-6
|
slope\:y=-6
|
intercepts of f(x)=-3x+1
|
intercepts\:f(x)=-3x+1
|
range of 3sqrt(x)
|
range\:3\sqrt{x}
|
inverse of (1-sqrt(x))/(1+sqrt(x))
|
inverse\:\frac{1-\sqrt{x}}{1+\sqrt{x}}
|
inverse of f(x)=(55x)/(15-x)
|
inverse\:f(x)=\frac{55x}{15-x}
|
inverse of (15/3)
|
inverse\:(\frac{15}{3})
|
inverse of f(x)=((-x+1))/((1+x))
|
inverse\:f(x)=\frac{(-x+1)}{(1+x)}
|
domain of f(x)=((x+3))/(2x^2-x-3)
|
domain\:f(x)=\frac{(x+3)}{2x^{2}-x-3}
|
domain of f(x)=(x+2)/3
|
domain\:f(x)=\frac{x+2}{3}
|
domain of f(x)=sqrt(-x)+4
|
domain\:f(x)=\sqrt{-x}+4
|
domain of f(x)=sqrt(16-x^4)
|
domain\:f(x)=\sqrt{16-x^{4}}
|
inverse of f(x)= 3/(2x-1)
|
inverse\:f(x)=\frac{3}{2x-1}
|
domain of f(x)=ln(5x)
|
domain\:f(x)=\ln(5x)
|
inverse of y=5x+4
|
inverse\:y=5x+4
|
extreme points of f(x)=x^2+5x+2
|
extreme\:points\:f(x)=x^{2}+5x+2
|
inverse of f(x)=ln(x-4)+2
|
inverse\:f(x)=\ln(x-4)+2
|
domain of f(x)=2x-x^2
|
domain\:f(x)=2x-x^{2}
|
domain of (x-1)/(x+2)
|
domain\:\frac{x-1}{x+2}
|
range of f(x)=5x-2
|
range\:f(x)=5x-2
|
line (25,0),(30,1)
|
line\:(25,0),(30,1)
|
domain of f(x)=ln(x/(2-x))
|
domain\:f(x)=\ln(\frac{x}{2-x})
|
slope of 3x+2y=-1
|
slope\:3x+2y=-1
|
inverse of-sqrt(x+1)
|
inverse\:-\sqrt{x+1}
|
inverse of f(x)= x/(5x-2)
|
inverse\:f(x)=\frac{x}{5x-2}
|
symmetry x/(x^3-x)
|
symmetry\:\frac{x}{x^{3}-x}
|
y=-(x^2)/(10)+(9x)/(10)+11/5
|
y=-\frac{x^{2}}{10}+\frac{9x}{10}+\frac{11}{5}
|
asymptotes of (x^2-4x-32)/(x^2-12x+32)
|
asymptotes\:\frac{x^{2}-4x-32}{x^{2}-12x+32}
|
range of f(x)=2^x
|
range\:f(x)=2^{x}
|
slope of x=6y+7
|
slope\:x=6y+7
|
domain of (2y)/(9+y^2)
|
domain\:\frac{2y}{9+y^{2}}
|
domain of f(x)=sqrt(x^2-5x+6)
|
domain\:f(x)=\sqrt{x^{2}-5x+6}
|
intercepts of f(x)=y=1.5x-6
|
intercepts\:f(x)=y=1.5x-6
|
intercepts of f(x)=((3x^2+8x+4))/(x^2-4)
|
intercepts\:f(x)=\frac{(3x^{2}+8x+4)}{x^{2}-4}
|
critical points of 2x-8/((x+1)^2)
|
critical\:points\:2x-\frac{8}{(x+1)^{2}}
|
domain of g(t)=(1-3t)/(4+t)
|
domain\:g(t)=\frac{1-3t}{4+t}
|
domain of f(x)=sqrt(x+9)-1
|
domain\:f(x)=\sqrt{x+9}-1
|
domain of f(x)=(sqrt(x+8))/(3x-8)
|
domain\:f(x)=\frac{\sqrt{x+8}}{3x-8}
|
line (20,0),(30,1)
|
line\:(20,0),(30,1)
|
domain of f(x)=sqrt(2x^2+3)
|
domain\:f(x)=\sqrt{2x^{2}+3}
|
f(x)=(x-2)^2
|
f(x)=(x-2)^{2}
|
domain of f(x)=(x^2)/(sqrt(9-x))
|
domain\:f(x)=\frac{x^{2}}{\sqrt{9-x}}
|
domain of (-8x+75)/(9x-61)
|
domain\:\frac{-8x+75}{9x-61}
|
domain of (x+3)/(x^2+12x+27)
|
domain\:(x+3)/(x^{2}+12x+27)
|
amplitude of sin(7x)
|
amplitude\:\sin(7x)
|
inverse of g(x)=(-x-12)/8
|
inverse\:g(x)=\frac{-x-12}{8}
|
extreme points of f(x)=x^4-162x^2+6561
|
extreme\:points\:f(x)=x^{4}-162x^{2}+6561
|
range of f(x)=-3x+5
|
range\:f(x)=-3x+5
|
slope intercept of y=-2/3 x+4
|
slope\:intercept\:y=-\frac{2}{3}x+4
|
inverse of f(x)=x(x+4)
|
inverse\:f(x)=x(x+4)
|
inverse of 1/2 \sqrt[3]{x}
|
inverse\:\frac{1}{2}\sqrt[3]{x}
|
f(x)=sqrt(1-x^2)
|
f(x)=\sqrt{1-x^{2}}
|
extreme points of f(x)=(x^2-2x+4)/(x-2)
|
extreme\:points\:f(x)=\frac{x^{2}-2x+4}{x-2}
|
intercepts of f(x)=(3x^2+6x+3)/(x^2+x)
|
intercepts\:f(x)=\frac{3x^{2}+6x+3}{x^{2}+x}
|
critical points of f(x)=t^4-12t^3+16t^2
|
critical\:points\:f(x)=t^{4}-12t^{3}+16t^{2}
|
domain of f(x)=(sqrt(x-1))/(x-2)
|
domain\:f(x)=\frac{\sqrt{x-1}}{x-2}
|
domain of f(x)=2sqrt(x+3)-1
|
domain\:f(x)=2\sqrt{x+3}-1
|
parallel y=1x+0,\at (-4,-6)
|
parallel\:y=1x+0,\at\:(-4,-6)
|
midpoint (-2,4)(3,-6)
|
midpoint\:(-2,4)(3,-6)
|
asymptotes of (x+6)/(x^2-36)
|
asymptotes\:\frac{x+6}{x^{2}-36}
|