domain of sqrt(10x+2)
|
domain\:\sqrt{10x+2}
|
monotone intervals f(x)=e^{-0.2x+5}
|
monotone\:intervals\:f(x)=e^{-0.2x+5}
|
range of f(x)=-2x^2+2x
|
range\:f(x)=-2x^{2}+2x
|
inverse of f(x)=x^2-16x+90
|
inverse\:f(x)=x^{2}-16x+90
|
midpoint (2,-6)(4,8)
|
midpoint\:(2,-6)(4,8)
|
domain of sqrt(4-x)-sqrt(x^2-9)
|
domain\:\sqrt{4-x}-\sqrt{x^{2}-9}
|
domain of f(x)=log_{2x+3}(x^2+3x-4)
|
domain\:f(x)=\log_{2x+3}(x^{2}+3x-4)
|
asymptotes of y=((x+3)(x-4))/((3x+1)(2x-3))
|
asymptotes\:y=\frac{(x+3)(x-4)}{(3x+1)(2x-3)}
|
asymptotes of f(x)=(x^3+8)/(x^2+5x+6)
|
asymptotes\:f(x)=\frac{x^{3}+8}{x^{2}+5x+6}
|
domain of f(x)=sin^3(x)
|
domain\:f(x)=\sin^{3}(x)
|
domain of f(x)=ln(x+1)
|
domain\:f(x)=\ln(x+1)
|
range of f(g)=sqrt(x-3)
|
range\:f(g)=\sqrt{x-3}
|
domain of (40)/((t+5)^2)
|
domain\:\frac{40}{(t+5)^{2}}
|
inflection points of f(x)=x^{1/3}=
|
inflection\:points\:f(x)=x^{\frac{1}{3}}=
|
line (1,-6),(-8,-1)
|
line\:(1,-6),(-8,-1)
|
f(x)=x^3+1
|
f(x)=x^{3}+1
|
range of-sqrt(9-x^2)
|
range\:-\sqrt{9-x^{2}}
|
midpoint (3,2)(-11,3)
|
midpoint\:(3,2)(-11,3)
|
intercepts of f(x)=(x-2)/(x^2+1)
|
intercepts\:f(x)=\frac{x-2}{x^{2}+1}
|
intercepts of f(x)=2+sqrt((x^3)/(x+5))
|
intercepts\:f(x)=2+\sqrt{\frac{x^{3}}{x+5}}
|
inverse of f(x)=2x-8
|
inverse\:f(x)=2x-8
|
domain of G(t)=(1-3t)/(4+t)
|
domain\:G(t)=\frac{1-3t}{4+t}
|
inverse of f(x)= 7/x-3
|
inverse\:f(x)=\frac{7}{x}-3
|
slope intercept of (4,-2),y=x+6
|
slope\:intercept\:(4,-2),y=x+6
|
parity f(x)= 1/(x-1)
|
parity\:f(x)=\frac{1}{x-1}
|
inflection points of f(x)=2x^3-3x^2+9x-5
|
inflection\:points\:f(x)=2x^{3}-3x^{2}+9x-5
|
inverse of f(x)=(1+5x)/(3-4x)
|
inverse\:f(x)=\frac{1+5x}{3-4x}
|
midpoint (3,-6)(5,-3)
|
midpoint\:(3,-6)(5,-3)
|
domain of f(x)=(7x)/(x^2-36)
|
domain\:f(x)=\frac{7x}{x^{2}-36}
|
inflection points of y=x^4-4x^2
|
inflection\:points\:y=x^{4}-4x^{2}
|
range of (4x)/(9x-1)
|
range\:\frac{4x}{9x-1}
|
midpoint (1,2)(5,8)
|
midpoint\:(1,2)(5,8)
|
parity sec^2(2x)dx
|
parity\:\sec^{2}(2x)dx
|
extreme points of y=xe^{-2x^2}
|
extreme\:points\:y=xe^{-2x^{2}}
|
asymptotes of f(x)=(1+3x^2-x^3)/(x^2)
|
asymptotes\:f(x)=\frac{1+3x^{2}-x^{3}}{x^{2}}
|
parallel y= 5/6 x-6,\at (-2,4)
|
parallel\:y=\frac{5}{6}x-6,\at\:(-2,4)
|
critical points of f(x)=(ln(x))/x
|
critical\:points\:f(x)=\frac{\ln(x)}{x}
|
asymptotes of f(x)=((-4x^2+100))/(5x-25)
|
asymptotes\:f(x)=\frac{(-4x^{2}+100)}{5x-25}
|
intercepts of (x^2)/(x-2)
|
intercepts\:\frac{x^{2}}{x-2}
|
slope of 4x+2y=10
|
slope\:4x+2y=10
|
inverse of ((4x-1))/(2x+9)
|
inverse\:\frac{(4x-1)}{2x+9}
|
domain of e^{sqrt(2)cos(x)}
|
domain\:e^{\sqrt{2}\cos(x)}
|
intercepts of (4/3)^x
|
intercepts\:(\frac{4}{3})^{x}
|
inverse of f(x)= 2/3 x+8
|
inverse\:f(x)=\frac{2}{3}x+8
|
line x+3
|
line\:x+3
|
inverse of f(x)=13+\sqrt[3]{x}
|
inverse\:f(x)=13+\sqrt[3]{x}
|
domain of f(x)=1+sqrt(x)
|
domain\:f(x)=1+\sqrt{x}
|
domain of x/(x^2+81)
|
domain\:\frac{x}{x^{2}+81}
|
inverse of 5x-8
|
inverse\:5x-8
|
parallel y=-3/2 x-1
|
parallel\:y=-\frac{3}{2}x-1
|
extreme points of f(x)= 1/(1+x^2)
|
extreme\:points\:f(x)=\frac{1}{1+x^{2}}
|
monotone intervals (4-x)/(x-1)
|
monotone\:intervals\:\frac{4-x}{x-1}
|
parity f(x)=xsqrt(8-x^2)
|
parity\:f(x)=x\sqrt{8-x^{2}}
|
critical points of f(x)=((x+4))/(x^2)
|
critical\:points\:f(x)=\frac{(x+4)}{x^{2}}
|
intercepts of f(x)=4x^3-12x^2-9x+27
|
intercepts\:f(x)=4x^{3}-12x^{2}-9x+27
|
inverse of f(x)= x/(7x-4)
|
inverse\:f(x)=\frac{x}{7x-4}
|
domain of f(x)=(x+6)/(24-sqrt(x^2-49))
|
domain\:f(x)=\frac{x+6}{24-\sqrt{x^{2}-49}}
|
domain of 6x-2
|
domain\:6x-2
|
slope of 9/5
|
slope\:\frac{9}{5}
|
intercepts of f(x)=ln(10-x)
|
intercepts\:f(x)=\ln(10-x)
|
domain of f(x)= 3/2
|
domain\:f(x)=\frac{3}{2}
|
intercepts of f(x)=sqrt(3x+4)
|
intercepts\:f(x)=\sqrt{3x+4}
|
midpoint (-5,-4)(0,-3.5)
|
midpoint\:(-5,-4)(0,-3.5)
|
inflection points of x^3+3x+8
|
inflection\:points\:x^{3}+3x+8
|
inverse of f(x)=\sqrt[3]{x}+987
|
inverse\:f(x)=\sqrt[3]{x}+987
|
asymptotes of (x+2)/(x-3)
|
asymptotes\:\frac{x+2}{x-3}
|
inverse of 5-2/x
|
inverse\:5-\frac{2}{x}
|
periodicity of y=sin(x)+2
|
periodicity\:y=\sin(x)+2
|
slope of f(x)=-2t^3,\at x=2
|
slope\:f(x)=-2t^{3},\at\:x=2
|
asymptotes of (2x^2+4x-16)/(x^2-7x+10)
|
asymptotes\:\frac{2x^{2}+4x-16}{x^{2}-7x+10}
|
critical points of f(x)=sqrt(x^2+9)
|
critical\:points\:f(x)=\sqrt{x^{2}+9}
|
asymptotes of f(x)= 1/x+3
|
asymptotes\:f(x)=\frac{1}{x}+3
|
monotone intervals f(x)=-1/(x+3)-7
|
monotone\:intervals\:f(x)=-\frac{1}{x+3}-7
|
domain of y=sqrt(x^2+3x+7)
|
domain\:y=\sqrt{x^{2}+3x+7}
|
inverse of f(x)=2^x-4
|
inverse\:f(x)=2^{x}-4
|
inverse of f(x)=\sqrt[3]{3x-2}
|
inverse\:f(x)=\sqrt[3]{3x-2}
|
inverse of y=sqrt(x^2-7x)
|
inverse\:y=\sqrt{x^{2}-7x}
|
critical points of-2x^2+25x
|
critical\:points\:-2x^{2}+25x
|
domain of f(x)=y=x+1/(x+5)
|
domain\:f(x)=y=x+\frac{1}{x+5}
|
intercepts of (2(-x^2-4))/((x^2-4)^2)
|
intercepts\:\frac{2(-x^{2}-4)}{(x^{2}-4)^{2}}
|
intercepts of f(x)=3x^3-12x^2-15x
|
intercepts\:f(x)=3x^{3}-12x^{2}-15x
|
domain of f(x)=(2x^2-x-1)/(x^2+4)
|
domain\:f(x)=\frac{2x^{2}-x-1}{x^{2}+4}
|
asymptotes of f(x)=(4x+4)/(3x+11)
|
asymptotes\:f(x)=\frac{4x+4}{3x+11}
|
perpendicular 7x-3y=-3
|
perpendicular\:7x-3y=-3
|
critical points of ln(5x)
|
critical\:points\:\ln(5x)
|
domain of x^2-1/x
|
domain\:x^{2}-\frac{1}{x}
|
inverse of 2x+1
|
inverse\:2x+1
|
critical points of f(x)=(x^2)/(2x-1)
|
critical\:points\:f(x)=\frac{x^{2}}{2x-1}
|
domain of-3x^2+x+5
|
domain\:-3x^{2}+x+5
|
monotone intervals (x^2-3)^3
|
monotone\:intervals\:(x^{2}-3)^{3}
|
range of y=x^2-4x+7
|
range\:y=x^{2}-4x+7
|
extreme points of x^2-6x
|
extreme\:points\:x^{2}-6x
|
asymptotes of f(x)= 2/(3x(x-1)(x+5))
|
asymptotes\:f(x)=\frac{2}{3x(x-1)(x+5)}
|
monotone intervals f(x)=-14x^2-16x+128
|
monotone\:intervals\:f(x)=-14x^{2}-16x+128
|
critical points of f(x)=x^{2/3}
|
critical\:points\:f(x)=x^{\frac{2}{3}}
|
perpendicular y=3x+2,\at (3,5)
|
perpendicular\:y=3x+2,\at\:(3,5)
|
parity f(x)=\sqrt[3]{4x}
|
parity\:f(x)=\sqrt[3]{4x}
|
vertex f(x)=y=x^2+6x+7
|
vertex\:f(x)=y=x^{2}+6x+7
|
asymptotes of f(x)=(x+2)/(3x-15)
|
asymptotes\:f(x)=\frac{x+2}{3x-15}
|
domain of \sqrt[4]{x}^5
|
domain\:\sqrt[4]{x}^{5}
|