asymptotes of f(x)=(x^2+1)/(2x^2-3x-2)
|
asymptotes\:f(x)=\frac{x^{2}+1}{2x^{2}-3x-2}
|
slope intercept of 3x+2y=7
|
slope\:intercept\:3x+2y=7
|
extreme points of f(x)=4x^3-48x-8
|
extreme\:points\:f(x)=4x^{3}-48x-8
|
intercepts of f(x)=7x+6y=6
|
intercepts\:f(x)=7x+6y=6
|
inverse of f(x)=(6+2x)/(4-7x)
|
inverse\:f(x)=\frac{6+2x}{4-7x}
|
intercepts of f(x)=(x^2+x-2)/(x^2)
|
intercepts\:f(x)=\frac{x^{2}+x-2}{x^{2}}
|
asymptotes of f(x)=(2-7x)/(2+5x)
|
asymptotes\:f(x)=\frac{2-7x}{2+5x}
|
inverse of f(x)= 1/((x-2)^2)
|
inverse\:f(x)=\frac{1}{(x-2)^{2}}
|
inverse of f(x)=(sqrt(x-2))/8
|
inverse\:f(x)=\frac{\sqrt{x-2}}{8}
|
amplitude of 2cos(2x-1)+4
|
amplitude\:2\cos(2x-1)+4
|
extreme points of f(x)= 1/3 x^3+3x^2+8x
|
extreme\:points\:f(x)=\frac{1}{3}x^{3}+3x^{2}+8x
|
line m=-2,\at (1,0)
|
line\:m=-2,\at\:(1,0)
|
domain of 3\sqrt[3]{x+6}-4
|
domain\:3\sqrt[3]{x+6}-4
|
line (0,0),(1,3)
|
line\:(0,0),(1,3)
|
asymptotes of f(x)=(x^2)/(x-5)
|
asymptotes\:f(x)=\frac{x^{2}}{x-5}
|
extreme points of f(x)=-2x^3-7
|
extreme\:points\:f(x)=-2x^{3}-7
|
domain of f(x)=sqrt(-5x+40)
|
domain\:f(x)=\sqrt{-5x+40}
|
midpoint (1,-4)(-2,5)
|
midpoint\:(1,-4)(-2,5)
|
inverse of f(x)=2^{x/4}
|
inverse\:f(x)=2^{\frac{x}{4}}
|
amplitude of-6cos(8x-(pi)/2)
|
amplitude\:-6\cos(8x-\frac{\pi}{2})
|
domain of 8x+2
|
domain\:8x+2
|
asymptotes of sqrt(2x-5)
|
asymptotes\:\sqrt{2x-5}
|
perpendicular x+3y=5(2,5)
|
perpendicular\:x+3y=5(2,5)
|
range of 1+x+2x^2-x^3
|
range\:1+x+2x^{2}-x^{3}
|
inverse of f(x)=sqrt(2-x)+9
|
inverse\:f(x)=\sqrt{2-x}+9
|
range of (2x-5)/(x(x-3))
|
range\:\frac{2x-5}{x(x-3)}
|
domain of f(x)=sin(x+3)
|
domain\:f(x)=\sin(x+3)
|
inverse of y=3
|
inverse\:y=3
|
perpendicular x+3y=-3
|
perpendicular\:x+3y=-3
|
slope of 5x-5y=7
|
slope\:5x-5y=7
|
domain of f(x)=x^2-9x
|
domain\:f(x)=x^{2}-9x
|
symmetry y=x^2-4x+6
|
symmetry\:y=x^{2}-4x+6
|
domain of f(x)= x/5
|
domain\:f(x)=\frac{x}{5}
|
domain of f(x)=-(-4-2x)/(9+x)
|
domain\:f(x)=-\frac{-4-2x}{9+x}
|
inverse of f(x)=x^{1/3}
|
inverse\:f(x)=x^{\frac{1}{3}}
|
inverse of f(x)=4x+3/4
|
inverse\:f(x)=4x+\frac{3}{4}
|
inverse of \sqrt[3]{x+3}
|
inverse\:\sqrt[3]{x+3}
|
domain of f(x)=5x^2+4
|
domain\:f(x)=5x^{2}+4
|
inverse of f(x)=\sqrt[3]{5^x}+9
|
inverse\:f(x)=\sqrt[3]{5^{x}}+9
|
critical points of (x+1)/(x^2)
|
critical\:points\:\frac{x+1}{x^{2}}
|
inflection points of y=x^{1/5}
|
inflection\:points\:y=x^{\frac{1}{5}}
|
domain of f(x)= 1/(sqrt(3x+6))
|
domain\:f(x)=\frac{1}{\sqrt{3x+6}}
|
intercepts of f(x)=12x^2+8x-15
|
intercepts\:f(x)=12x^{2}+8x-15
|
domain of 1/(8(sqrt(2x+10))-16)
|
domain\:\frac{1}{8(\sqrt{2x+10})-16}
|
shift 4-3cos(4x)
|
shift\:4-3\cos(4x)
|
inverse of y=(x+10)^3
|
inverse\:y=(x+10)^{3}
|
parallel-1/2 x=4y
|
parallel\:-\frac{1}{2}x=4y
|
inverse of f(x)=-x-16
|
inverse\:f(x)=-x-16
|
domain of f(x)=x^2-5x
|
domain\:f(x)=x^{2}-5x
|
slope intercept of x=7y
|
slope\:intercept\:x=7y
|
intercepts of f(x)=7x-3y=8yy=3x
|
intercepts\:f(x)=7x-3y=8yy=3x
|
domain of 1+1/(2sqrt(x))
|
domain\:1+\frac{1}{2\sqrt{x}}
|
intercepts of f(x)=0
|
intercepts\:f(x)=0
|
perpendicular 2x+4y=-2,\at (-3,1)
|
perpendicular\:2x+4y=-2,\at\:(-3,1)
|
domain of f(x)=sqrt(9-x)
|
domain\:f(x)=\sqrt{9-x}
|
midpoint (3,-7)(7,3)
|
midpoint\:(3,-7)(7,3)
|
inverse of f(x)= 5/2 x+5
|
inverse\:f(x)=\frac{5}{2}x+5
|
monotone intervals f(x)=x^3-3x+4
|
monotone\:intervals\:f(x)=x^{3}-3x+4
|
inverse of \sqrt[3]{x+8}-6
|
inverse\:\sqrt[3]{x+8}-6
|
asymptotes of (x+1)/(x-1)
|
asymptotes\:\frac{x+1}{x-1}
|
domain of (5x)/(x^2-16)
|
domain\:\frac{5x}{x^{2}-16}
|
range of f(x)=arccos(((1-2x))/4)
|
range\:f(x)=\arccos(\frac{(1-2x)}{4})
|
domain of f(x)=((sqrt(x)))/(3x^2+2x-1)
|
domain\:f(x)=\frac{(\sqrt{x})}{3x^{2}+2x-1}
|
domain of f(x)=(x^2)/(5-x)
|
domain\:f(x)=\frac{x^{2}}{5-x}
|
slope of y=x+7
|
slope\:y=x+7
|
inflection points of 2+x^2ln(x)
|
inflection\:points\:2+x^{2}\ln(x)
|
asymptotes of f(x)=(6x-7)/(11x+8)
|
asymptotes\:f(x)=\frac{6x-7}{11x+8}
|
domain of g(x)=sqrt(1-x)
|
domain\:g(x)=\sqrt{1-x}
|
midpoint (2,1)(4,5)
|
midpoint\:(2,1)(4,5)
|
critical points of f(x)=(x+3)(x-1)^2
|
critical\:points\:f(x)=(x+3)(x-1)^{2}
|
range of (x-2)^2+3
|
range\:(x-2)^{2}+3
|
asymptotes of x^3-4x^2+4x-3
|
asymptotes\:x^{3}-4x^{2}+4x-3
|
intercepts of f(x)= 2/3 x-4
|
intercepts\:f(x)=\frac{2}{3}x-4
|
slope intercept of 3x+15y=45
|
slope\:intercept\:3x+15y=45
|
domain of |x^2-1|
|
domain\:|x^{2}-1|
|
domain of f(x)=-sqrt(x+5)
|
domain\:f(x)=-\sqrt{x+5}
|
asymptotes of f(x)=(-2)/(x-4)
|
asymptotes\:f(x)=\frac{-2}{x-4}
|
intercepts of y=(x^2-6x+12)/(x-4)
|
intercepts\:y=\frac{x^{2}-6x+12}{x-4}
|
asymptotes of f(x)=x+9/x
|
asymptotes\:f(x)=x+\frac{9}{x}
|
asymptotes of f(x)=(x^2+x-2)/(x^2)
|
asymptotes\:f(x)=\frac{x^{2}+x-2}{x^{2}}
|
extreme points of y=2x^2+14x-25
|
extreme\:points\:y=2x^{2}+14x-25
|
slope of 3x-2y=-16
|
slope\:3x-2y=-16
|
intercepts of f(x)=7x+2
|
intercepts\:f(x)=7x+2
|
periodicity of y=5cos(3x-(pi)/4)
|
periodicity\:y=5\cos(3x-\frac{\pi}{4})
|
asymptotes of f(x)=(x^2+4)/(4x^2-4x-8)
|
asymptotes\:f(x)=\frac{x^{2}+4}{4x^{2}-4x-8}
|
line (-4,0),(0,9)
|
line\:(-4,0),(0,9)
|
f(x)=x+2
|
f(x)=x+2
|
slope intercept of y+7=-2(x-3)
|
slope\:intercept\:y+7=-2(x-3)
|
asymptotes of f(x)=(x-9)/(x^2-81)
|
asymptotes\:f(x)=\frac{x-9}{x^{2}-81}
|
critical points of x^2sqrt(x+1)
|
critical\:points\:x^{2}\sqrt{x+1}
|
domain of y=log_{2}(x)
|
domain\:y=\log_{2}(x)
|
range of sqrt(x^2+8x+14)
|
range\:\sqrt{x^{2}+8x+14}
|
parity f(x)=x^3-4x
|
parity\:f(x)=x^{3}-4x
|
domain of f(t)=ln(t+1)
|
domain\:f(t)=\ln(t+1)
|
range of f(x)=x^2,-2<= x<= 5
|
range\:f(x)=x^{2},-2\le\:x\le\:5
|
domain of 4x^2-4x+9
|
domain\:4x^{2}-4x+9
|
range of f(x)=-(5)^x+5
|
range\:f(x)=-(5)^{x}+5
|
midpoint (-1/3 , 1/5)(-11/2 , 9/10)
|
midpoint\:(-\frac{1}{3},\frac{1}{5})(-\frac{11}{2},\frac{9}{10})
|
asymptotes of f(x)=(x-3)/(x^2-6x+9)
|
asymptotes\:f(x)=\frac{x-3}{x^{2}-6x+9}
|
y= 1/2 x-1
|
y=\frac{1}{2}x-1
|