extreme points of f(x)=(3x-x^3)^{(1/2)}
|
extreme\:points\:f(x)=(3x-x^{3})^{(\frac{1}{2})}
|
inverse of f(x)=(9/5)c+32
|
inverse\:f(x)=(\frac{9}{5})c+32
|
inverse of f(x)= 1/2 (x+2)^3
|
inverse\:f(x)=\frac{1}{2}(x+2)^{3}
|
inverse of f(x)=(5x-8)^2
|
inverse\:f(x)=(5x-8)^{2}
|
intercepts of y=7tan(0.4x)
|
intercepts\:y=7\tan(0.4x)
|
inverse of y=(x+3)^2
|
inverse\:y=(x+3)^{2}
|
slope of 5x+7y=4
|
slope\:5x+7y=4
|
midpoint (-16,-18)(-22,-54)
|
midpoint\:(-16,-18)(-22,-54)
|
domain of y=2x+5
|
domain\:y=2x+5
|
domain of (2x)/(x-3)
|
domain\:\frac{2x}{x-3}
|
periodicity of f(x)=cos(5x)
|
periodicity\:f(x)=\cos(5x)
|
inverse of f(x)=x+3
|
inverse\:f(x)=x+3
|
range of (12-x-x^2)/(x-3)
|
range\:\frac{12-x-x^{2}}{x-3}
|
critical points of 0.5x-(2560)/(x^2)
|
critical\:points\:0.5x-\frac{2560}{x^{2}}
|
intercepts of f(x)=x^2+y-16=0
|
intercepts\:f(x)=x^{2}+y-16=0
|
asymptotes of (x^2-6x-72)/(x^2-18x+72)
|
asymptotes\:\frac{x^{2}-6x-72}{x^{2}-18x+72}
|
amplitude of f(x)=4sin(50x)
|
amplitude\:f(x)=4\sin(50x)
|
domain of f(x)=sqrt(-x^2+9x-8)-4
|
domain\:f(x)=\sqrt{-x^{2}+9x-8}-4
|
domain of f(x)=(x+4)/(x-2)
|
domain\:f(x)=\frac{x+4}{x-2}
|
critical points of x^4+4x^3-9
|
critical\:points\:x^{4}+4x^{3}-9
|
domain of 1/(x^3+x-2)
|
domain\:\frac{1}{x^{3}+x-2}
|
inverse of f(x)=5x+11
|
inverse\:f(x)=5x+11
|
line (5,16.5),(14,17.7)
|
line\:(5,16.5),(14,17.7)
|
domain of (-6x^2)/((x-8)(x+2))
|
domain\:\frac{-6x^{2}}{(x-8)(x+2)}
|
slope of (0,1),y=4x+2
|
slope\:(0,1),y=4x+2
|
range of f(x)=x^3+x
|
range\:f(x)=x^{3}+x
|
domain of f(x)=(9x-4)/(2-x)
|
domain\:f(x)=\frac{9x-4}{2-x}
|
domain of 1/(2(2x+4)+4)
|
domain\:\frac{1}{2(2x+4)+4}
|
distance (-2,-3)(-7,-2)
|
distance\:(-2,-3)(-7,-2)
|
domain of f(x)=(x+4)/(x-5)
|
domain\:f(x)=\frac{x+4}{x-5}
|
inverse of 3
|
inverse\:3
|
asymptotes of y= 5/(4x-8)
|
asymptotes\:y=\frac{5}{4x-8}
|
intercepts of f(x)=x^2+3x-2
|
intercepts\:f(x)=x^{2}+3x-2
|
inverse of f(x)=(2x+1)/x
|
inverse\:f(x)=\frac{2x+1}{x}
|
parity f(x)=x^3+2x^2-x+3
|
parity\:f(x)=x^{3}+2x^{2}-x+3
|
critical points of cos(2x)
|
critical\:points\:\cos(2x)
|
intercepts of f(x)=x^2-x-12
|
intercepts\:f(x)=x^{2}-x-12
|
extreme points of f(x)=3x^{(2/3)}-2x
|
extreme\:points\:f(x)=3x^{(\frac{2}{3})}-2x
|
critical points of f(x)=2.6+1.4x-0.2x^2
|
critical\:points\:f(x)=2.6+1.4x-0.2x^{2}
|
line (3,-1)(4,7)
|
line\:(3,-1)(4,7)
|
domain of f(x)=5x^2+5
|
domain\:f(x)=5x^{2}+5
|
asymptotes of (x^2-1)/(x-1)
|
asymptotes\:\frac{x^{2}-1}{x-1}
|
parallel 9x+7418x+38
|
parallel\:9x+7418x+38
|
symmetry x^2-2x-8
|
symmetry\:x^{2}-2x-8
|
critical points of x^3-27
|
critical\:points\:x^{3}-27
|
domain of f(x)=sqrt(x-1)+5
|
domain\:f(x)=\sqrt{x-1}+5
|
inverse of f(x)=sqrt(4x+1)
|
inverse\:f(x)=\sqrt{4x+1}
|
periodicity of f(x)=2sin(x)
|
periodicity\:f(x)=2\sin(x)
|
domain of f(x)=((5x+2))/(x-1)
|
domain\:f(x)=\frac{(5x+2)}{x-1}
|
extreme points of (t^2-4)^{2/3}
|
extreme\:points\:(t^{2}-4)^{\frac{2}{3}}
|
inverse of f(x)=11x^2-8
|
inverse\:f(x)=11x^{2}-8
|
inverse of y=2x^3-5
|
inverse\:y=2x^{3}-5
|
domain of 2/(x-5)
|
domain\:\frac{2}{x-5}
|
inverse of f(x)=15+\sqrt[3]{x}
|
inverse\:f(x)=15+\sqrt[3]{x}
|
parity f(x)=sin^2(x)
|
parity\:f(x)=\sin^{2}(x)
|
intercepts of f(x)=y=11x+6
|
intercepts\:f(x)=y=11x+6
|
domain of f(x)=-7x+4
|
domain\:f(x)=-7x+4
|
critical points of f(x)=4sqrt(x)-x^2
|
critical\:points\:f(x)=4\sqrt{x}-x^{2}
|
range of f(x)=2^{x+1}-1
|
range\:f(x)=2^{x+1}-1
|
inverse of f(x)=(3x+1)/(1-7x)
|
inverse\:f(x)=\frac{3x+1}{1-7x}
|
inverse of sqrt(x+4)
|
inverse\:\sqrt{x+4}
|
range of 2x^3+5
|
range\:2x^{3}+5
|
inflection points of x^3-3x^2-72x
|
inflection\:points\:x^{3}-3x^{2}-72x
|
inverse of f(x)=((x+9))/(x-5)
|
inverse\:f(x)=\frac{(x+9)}{x-5}
|
intercepts of (2x)/(x-3)
|
intercepts\:\frac{2x}{x-3}
|
symmetry x^3-3x
|
symmetry\:x^{3}-3x
|
inverse of (3x-2)/(7x+3)
|
inverse\:\frac{3x-2}{7x+3}
|
inverse of (2+3*ln(x))/(4-ln(x))
|
inverse\:\frac{2+3\cdot\:\ln(x)}{4-\ln(x)}
|
extreme points of x(x-4)^2
|
extreme\:points\:x(x-4)^{2}
|
intercepts of f(x)=(4x^2)/(x^2-9)
|
intercepts\:f(x)=\frac{4x^{2}}{x^{2}-9}
|
slope of 3+4x=2y-9
|
slope\:3+4x=2y-9
|
slope intercept of 3x+2y=-8
|
slope\:intercept\:3x+2y=-8
|
parity tan^{-1}(tan(x))
|
parity\:\tan^{-1}(\tan(x))
|
asymptotes of 3(x^2-16)/(x^2-9)
|
asymptotes\:3\frac{x^{2}-16}{x^{2}-9}
|
extreme points of f(x)=-5x+2x^2+(x^3)/3
|
extreme\:points\:f(x)=-5x+2x^{2}+\frac{x^{3}}{3}
|
domain of 7x^2-3
|
domain\:7x^{2}-3
|
inverse of f(x)=sqrt(6x+2)
|
inverse\:f(x)=\sqrt{6x+2}
|
domain of f(x)=(2x+1)/(x^2-49)
|
domain\:f(x)=\frac{2x+1}{x^{2}-49}
|
extreme points of 4x^3-45x^2+150x
|
extreme\:points\:4x^{3}-45x^{2}+150x
|
intercepts of x^2+3x-5
|
intercepts\:x^{2}+3x-5
|
inverse of f(x)=x^2-8
|
inverse\:f(x)=x^{2}-8
|
range of (sqrt(x-2))/(x-9)
|
range\:\frac{\sqrt{x-2}}{x-9}
|
domain of f(x)=1+sqrt(4-y^2)
|
domain\:f(x)=1+\sqrt{4-y^{2}}
|
critical points of x^3-27x+9
|
critical\:points\:x^{3}-27x+9
|
extreme points of f(x)=-3x^4+30x^2-27
|
extreme\:points\:f(x)=-3x^{4}+30x^{2}-27
|
inverse of f(x)= 4/(2x-1)
|
inverse\:f(x)=\frac{4}{2x-1}
|
slope of y-x=5
|
slope\:y-x=5
|
domain of f(x)=2
|
domain\:f(x)=2
|
slope of x-5=0
|
slope\:x-5=0
|
inverse of g(x)=x^3-2
|
inverse\:g(x)=x^{3}-2
|
parallel y=0.6x+3,\at (-3,-5)
|
parallel\:y=0.6x+3,\at\:(-3,-5)
|
range of f(x)=2x-6
|
range\:f(x)=2x-6
|
domain of f(x)= 2/(x^2-20x+75)
|
domain\:f(x)=\frac{2}{x^{2}-20x+75}
|
asymptotes of f(x)= 2/7 tan(6x)
|
asymptotes\:f(x)=\frac{2}{7}\tan(6x)
|
domain of (7/x)+(9/(x+9))
|
domain\:(\frac{7}{x})+(\frac{9}{x+9})
|
domain of-5x+1
|
domain\:-5x+1
|
parallel y=-1/2 x-4,\at (3,-4)
|
parallel\:y=-\frac{1}{2}x-4,\at\:(3,-4)
|
midpoint (-11,5)(-5,7)
|
midpoint\:(-11,5)(-5,7)
|
inverse of e^{4sqrt(x)}
|
inverse\:e^{4\sqrt{x}}
|
domain of f(x)=(x^2)/2
|
domain\:f(x)=\frac{x^{2}}{2}
|