asymptotes of 1/(x-1)-2
|
asymptotes\:\frac{1}{x-1}-2
|
asymptotes of f(x)=x^2+1
|
asymptotes\:f(x)=x^{2}+1
|
slope intercept of y-2=-2/3 (x+2)
|
slope\:intercept\:y-2=-\frac{2}{3}(x+2)
|
domain of f(x)= 1/(|3-x|)
|
domain\:f(x)=\frac{1}{|3-x|}
|
inverse of y=2x-3
|
inverse\:y=2x-3
|
domain of f(x)=-x^2-2x-1
|
domain\:f(x)=-x^{2}-2x-1
|
inverse of f(x)=15.5-5t
|
inverse\:f(x)=15.5-5t
|
asymptotes of x/(x(x-1))
|
asymptotes\:\frac{x}{x(x-1)}
|
domain of f(x)=(2x^2-3)/(x^2-1)
|
domain\:f(x)=\frac{2x^{2}-3}{x^{2}-1}
|
inverse of f(x)= 3/5 x-15
|
inverse\:f(x)=\frac{3}{5}x-15
|
line (2011,1209),(2019,2205)
|
line\:(2011,1209),(2019,2205)
|
critical points of f(x)=xln(6x)
|
critical\:points\:f(x)=xln(6x)
|
periodicity of f(x)=6sin(1/6 x)
|
periodicity\:f(x)=6\sin(\frac{1}{6}x)
|
domain of f(x)=(4-x)/(x+5)
|
domain\:f(x)=\frac{4-x}{x+5}
|
inverse of f(x)=log_{5}(3x^3-6)
|
inverse\:f(x)=\log_{5}(3x^{3}-6)
|
critical points of x^2e^{2x}
|
critical\:points\:x^{2}e^{2x}
|
inverse of f(x)= 3/4 x-2
|
inverse\:f(x)=\frac{3}{4}x-2
|
domain of f(x)=sqrt(x^3-9x^2-x+9)
|
domain\:f(x)=\sqrt{x^{3}-9x^{2}-x+9}
|
asymptotes of f(x)=(x-1)/(x+1)
|
asymptotes\:f(x)=\frac{x-1}{x+1}
|
perpendicular x-6y=-2,\at (0,-5)
|
perpendicular\:x-6y=-2,\at\:(0,-5)
|
range of f(x)=-sqrt(x+8)
|
range\:f(x)=-\sqrt{x+8}
|
extreme points of 1/3 x^3-x^2+x+5
|
extreme\:points\:\frac{1}{3}x^{3}-x^{2}+x+5
|
line (1,3),(2,6)
|
line\:(1,3),(2,6)
|
critical points of (e^x(x-2))/(x^3)
|
critical\:points\:\frac{e^{x}(x-2)}{x^{3}}
|
inverse of y=3x-4
|
inverse\:y=3x-4
|
domain of f(x)=sqrt(7-8x)
|
domain\:f(x)=\sqrt{7-8x}
|
domain of f(x)=2+(x-4)^{2/3}
|
domain\:f(x)=2+(x-4)^{\frac{2}{3}}
|
critical points of e^x*(x^2+4x+1)
|
critical\:points\:e^{x}\cdot\:(x^{2}+4x+1)
|
inflection points of-4x^4+5x^3-x^2
|
inflection\:points\:-4x^{4}+5x^{3}-x^{2}
|
domain of f(x)=(x^2-5x+6)/(x-2)
|
domain\:f(x)=\frac{x^{2}-5x+6}{x-2}
|
inverse of f(x)=100-x
|
inverse\:f(x)=100-x
|
domain of (x+1)/(x^2-x-2)
|
domain\:\frac{x+1}{x^{2}-x-2}
|
asymptotes of f(x)=4^x-3
|
asymptotes\:f(x)=4^{x}-3
|
intercepts of f(x)=(4x)/(x-5)
|
intercepts\:f(x)=\frac{4x}{x-5}
|
domain of (x-1)/(x^2-x)
|
domain\:\frac{x-1}{x^{2}-x}
|
range of 2/(x^2)+9
|
range\:\frac{2}{x^{2}}+9
|
parallel 12x+4y=24
|
parallel\:12x+4y=24
|
range of f(x)= 1/(x-5)
|
range\:f(x)=\frac{1}{x-5}
|
shift-3tan(1/2 x)
|
shift\:-3\tan(\frac{1}{2}x)
|
monotone intervals 5x^3-5x^2-4
|
monotone\:intervals\:5x^{3}-5x^{2}-4
|
intercepts of (x^2-3x-18)/(x-10)
|
intercepts\:\frac{x^{2}-3x-18}{x-10}
|
asymptotes of 1/(6-x)
|
asymptotes\:\frac{1}{6-x}
|
extreme points of f(x)=(x^3)/(x^2-1)
|
extreme\:points\:f(x)=\frac{x^{3}}{x^{2}-1}
|
range of f(x)=-1
|
range\:f(x)=-1
|
slope intercept of x=-13(-5,6)
|
slope\:intercept\:x=-13(-5,6)
|
domain of 4x+3
|
domain\:4x+3
|
domain of f(x)=sqrt(3x+6)
|
domain\:f(x)=\sqrt{3x+6}
|
inverse of f(x)=sqrt(1+x^3)
|
inverse\:f(x)=\sqrt{1+x^{3}}
|
inverse of f(x)=4\sqrt[3]{x-7}
|
inverse\:f(x)=4\sqrt[3]{x-7}
|
critical points of f(x)=e^{x^2+2x}
|
critical\:points\:f(x)=e^{x^{2}+2x}
|
parity f(x)=sqrt(8x)
|
parity\:f(x)=\sqrt{8x}
|
extreme points of f(x)=x^2+3x-10
|
extreme\:points\:f(x)=x^{2}+3x-10
|
critical points of log_{3}(x-1)-2
|
critical\:points\:\log_{3}(x-1)-2
|
inverse of f(x)=2x^2-3x
|
inverse\:f(x)=2x^{2}-3x
|
range of 1/((x+1)^2)
|
range\:\frac{1}{(x+1)^{2}}
|
asymptotes of f(x)=(4x^2-12x)/(x^2-9)
|
asymptotes\:f(x)=\frac{4x^{2}-12x}{x^{2}-9}
|
parity x/(1-cos(x))
|
parity\:\frac{x}{1-\cos(x)}
|
periodicity of y=-2sin((2pi)/7 x)
|
periodicity\:y=-2\sin(\frac{2\pi}{7}x)
|
inverse of h=160t-16t^2
|
inverse\:h=160t-16t^{2}
|
midpoint (0,2)(4,6)
|
midpoint\:(0,2)(4,6)
|
domain of f(x)=10x+3
|
domain\:f(x)=10x+3
|
domain of f(x)=sqrt(2-5x)
|
domain\:f(x)=\sqrt{2-5x}
|
domain of f(x)= 4/(4x+1)
|
domain\:f(x)=\frac{4}{4x+1}
|
asymptotes of f(x)=(2x+24)/(x^2+4x-96)
|
asymptotes\:f(x)=\frac{2x+24}{x^{2}+4x-96}
|
critical points of f(x)=3x(x^2+4x+5)
|
critical\:points\:f(x)=3x(x^{2}+4x+5)
|
distance (-3,7)(8,-6)
|
distance\:(-3,7)(8,-6)
|
asymptotes of ((4x^2+1))/(2x^2+5x-3)
|
asymptotes\:\frac{(4x^{2}+1)}{2x^{2}+5x-3}
|
extreme points of f(x)=x^3-6x+20
|
extreme\:points\:f(x)=x^{3}-6x+20
|
periodicity of-cos(x-(pi)/2)
|
periodicity\:-\cos(x-\frac{\pi}{2})
|
domain of-sqrt(-x+4)
|
domain\:-\sqrt{-x+4}
|
domain of f(x)= 1/(4x-8)
|
domain\:f(x)=\frac{1}{4x-8}
|
midpoint (9,1)(5,3)
|
midpoint\:(9,1)(5,3)
|
range of f(x)= 7/(x+2)
|
range\:f(x)=\frac{7}{x+2}
|
asymptotes of f(x)=(x^2+x+2)/(x-1)
|
asymptotes\:f(x)=\frac{x^{2}+x+2}{x-1}
|
parallel 6x-2y-3=0
|
parallel\:6x-2y-3=0
|
domain of =((x^2+2x-1))/((x^2-1)^2)
|
domain\:=\frac{(x^{2}+2x-1)}{(x^{2}-1)^{2}}
|
intercepts of f(x)=x^2-3x-5
|
intercepts\:f(x)=x^{2}-3x-5
|
domain of f(x)=(x+2)/(sqrt(x-10))
|
domain\:f(x)=\frac{x+2}{\sqrt{x-10}}
|
shift f(x)=6cos(3x-(pi)/4)
|
shift\:f(x)=6\cos(3x-\frac{\pi}{4})
|
inverse of f(x)=sqrt(x+7)+2
|
inverse\:f(x)=\sqrt{x+7}+2
|
range of cos(4x)
|
range\:\cos(4x)
|
parity f(x)=x^3-6x
|
parity\:f(x)=x^{3}-6x
|
critical points of \sqrt[3]{x-1}
|
critical\:points\:\sqrt[3]{x-1}
|
range of \sqrt[3]{x}-3
|
range\:\sqrt[3]{x}-3
|
domain of f(x)=(x+7)/(x^2-4)
|
domain\:f(x)=\frac{x+7}{x^{2}-4}
|
domain of f(x)=log_{10}(x+1)
|
domain\:f(x)=\log_{10}(x+1)
|
slope intercept of 2x-y=-6
|
slope\:intercept\:2x-y=-6
|
midpoint (0,10)(5,5)
|
midpoint\:(0,10)(5,5)
|
slope intercept of x+y=105
|
slope\:intercept\:x+y=105
|
inverse of f(x)=log_{1/2}(-4x)
|
inverse\:f(x)=\log_{\frac{1}{2}}(-4x)
|
range of y=tan((pi)/7 x)
|
range\:y=\tan(\frac{\pi}{7}x)
|
range of (3x)/(2x-1)
|
range\:\frac{3x}{2x-1}
|
domain of f(x)=-log_{2}(x)
|
domain\:f(x)=-\log_{2}(x)
|
inverse of f(x)=\sqrt[3]{(x^7)/5}
|
inverse\:f(x)=\sqrt[3]{\frac{x^{7}}{5}}
|
domain of f(x)=2x^2+4x-6
|
domain\:f(x)=2x^{2}+4x-6
|
domain of f(x)=-2x^2-2x+10
|
domain\:f(x)=-2x^{2}-2x+10
|
intercepts of ln(x+3)
|
intercepts\:\ln(x+3)
|
range of f(x)=(2x-1)^2
|
range\:f(x)=(2x-1)^{2}
|
midpoint (-16,0)(0,-16)
|
midpoint\:(-16,0)(0,-16)
|
inverse of y=2x+2
|
inverse\:y=2x+2
|