intercepts f(x)=x^2-1/(x-2)
|
intercepts\:f(x)=x^{2}-\frac{1}{x-2}
|
inverse f(x)=-x^3+5
|
inverse\:f(x)=-x^{3}+5
|
inverse sqrt(25-x^2)
|
inverse\:\sqrt{25-x^{2}}
|
inverse f(x)= 7/(7-5x)
|
inverse\:f(x)=\frac{7}{7-5x}
|
inverse f(x)= 1/3 log_{2}(x)+1
|
inverse\:f(x)=\frac{1}{3}\log_{2}(x)+1
|
inverse x^2-x-2
|
inverse\:x^{2}-x-2
|
inverse f(x)=2ln(x)
|
inverse\:f(x)=2\ln(x)
|
inverse f(x)= 1/2 sqrt(x)+1
|
inverse\:f(x)=\frac{1}{2}\sqrt{x}+1
|
inverse f(x)=x^7+5
|
inverse\:f(x)=x^{7}+5
|
inverse f(x)=(((5x+31))/((2x-13)))
|
inverse\:f(x)=(\frac{(5x+31)}{(2x-13)})
|
inverse 1/(2x+3)
|
inverse\:\frac{1}{2x+3}
|
amplitude 2cos(x)
|
amplitude\:2\cos(x)
|
inverse f(x)=(1+x)/(1-x)
|
inverse\:f(x)=\frac{1+x}{1-x}
|
inverse f(x)=9(\sqrt[5]{x}+2)
|
inverse\:f(x)=9(\sqrt[5]{x}+2)
|
inverse y=5-6x
|
inverse\:y=5-6x
|
inverse g(x)=x^3+2
|
inverse\:g(x)=x^{3}+2
|
inverse f(x)= x/5-2
|
inverse\:f(x)=\frac{x}{5}-2
|
inverse f(x)=sqrt(2x-2)+1
|
inverse\:f(x)=\sqrt{2x-2}+1
|
inverse f(x)=ln(x-6)
|
inverse\:f(x)=\ln(x-6)
|
inverse-2x-8
|
inverse\:-2x-8
|
inverse f(x)=18x
|
inverse\:f(x)=18x
|
inverse f(x)=5\sqrt[5]{x+7}
|
inverse\:f(x)=5\sqrt[5]{x+7}
|
amplitude f(x)=cos(x)
|
amplitude\:f(x)=\cos(x)
|
inverse y= 1/3 x+3
|
inverse\:y=\frac{1}{3}x+3
|
inverse f(x)=10x^{1/5}-2
|
inverse\:f(x)=10x^{\frac{1}{5}}-2
|
inverse 5x-4
|
inverse\:5x-4
|
inverse f(x)=4x+sqrt(x+17)
|
inverse\:f(x)=4x+\sqrt{x+17}
|
inverse f(x)=x+24
|
inverse\:f(x)=x+24
|
inverse (x+5)^3-4
|
inverse\:(x+5)^{3}-4
|
inverse log_{2}(kx-10)
|
inverse\:\log_{2}(kx-10)
|
inverse f(x)=(2x+3)/(x-5)
|
inverse\:f(x)=\frac{2x+3}{x-5}
|
inverse f(x)=(3-2x)/(3x+1)
|
inverse\:f(x)=\frac{3-2x}{3x+1}
|
inverse y=x^4
|
inverse\:y=x^{4}
|
line (-27,0)(27,6)
|
line\:(-27,0)(27,6)
|
inverse f(x)=(x+1)^2,x>=-1
|
inverse\:f(x)=(x+1)^{2},x\ge\:-1
|
inverse 3(1/4)^{x-2}+4
|
inverse\:3(\frac{1}{4})^{x-2}+4
|
inverse f(x)=x^2+x,x>=-1/2
|
inverse\:f(x)=x^{2}+x,x\ge\:-\frac{1}{2}
|
inverse 4t^2+1
|
inverse\:4t^{2}+1
|
inverse f(x)=(x^3+2)/(x^3-2)
|
inverse\:f(x)=\frac{x^{3}+2}{x^{3}-2}
|
inverse f(x)= 2/(2x-1)
|
inverse\:f(x)=\frac{2}{2x-1}
|
inverse y=(x+1)/(2x+1)
|
inverse\:y=\frac{x+1}{2x+1}
|
inverse f(x)=-5x-30
|
inverse\:f(x)=-5x-30
|
inverse (e^x)/(1+e^x)
|
inverse\:\frac{e^{x}}{1+e^{x}}
|
inverse f(x)=(x-9)^2,x>= 9
|
inverse\:f(x)=(x-9)^{2},x\ge\:9
|
range 15-x/(8.345)
|
range\:15-\frac{x}{8.345}
|
inverse f(x)=sqrt(1+x)
|
inverse\:f(x)=\sqrt{1+x}
|
inverse arcsin(1/2)
|
inverse\:\arcsin(\frac{1}{2})
|
inverse f(x)=((x-1))/(x+1)
|
inverse\:f(x)=\frac{(x-1)}{x+1}
|
inverse f(x)=4(x+17)
|
inverse\:f(x)=4(x+17)
|
inverse f(x)= 3/(sqrt(x^2-1))
|
inverse\:f(x)=\frac{3}{\sqrt{x^{2}-1}}
|
inverse ln(x+sqrt(x^2+1))
|
inverse\:\ln(x+\sqrt{x^{2}+1})
|
inverse g(x)=x+6
|
inverse\:g(x)=x+6
|
inverse f(x)= 5/2 x-15
|
inverse\:f(x)=\frac{5}{2}x-15
|
inverse f(x)= 1/(sqrt(x^2+x-2))
|
inverse\:f(x)=\frac{1}{\sqrt{x^{2}+x-2}}
|
inverse f(x)=1+sqrt(6+9x)
|
inverse\:f(x)=1+\sqrt{6+9x}
|
extreme points f(x)=(x^2-4x)^2
|
extreme\:points\:f(x)=(x^{2}-4x)^{2}
|
inverse f(x)=\sqrt[3]{x+4-5}
|
inverse\:f(x)=\sqrt[3]{x+4-5}
|
inverse f(x)=sqrt(7-2x)-5
|
inverse\:f(x)=\sqrt{7-2x}-5
|
inverse 11
|
inverse\:11
|
inverse \sqrt[3]{x}+5
|
inverse\:\sqrt[3]{x}+5
|
inverse (1-2x)/(1-x)
|
inverse\:\frac{1-2x}{1-x}
|
inverse f(x)=(5x+2)/(x-4)
|
inverse\:f(x)=\frac{5x+2}{x-4}
|
inverse f(x)=-4x^2-5
|
inverse\:f(x)=-4x^{2}-5
|
inverse 9sin(x-5)+8
|
inverse\:9\sin(x-5)+8
|
inverse f(x)=2x^2-3x-1
|
inverse\:f(x)=2x^{2}-3x-1
|
inverse e^x-3
|
inverse\:e^{x}-3
|
parity f(x)=x^3+3
|
parity\:f(x)=x^{3}+3
|
inverse f(x)= x/(2x^2-x-1)
|
inverse\:f(x)=\frac{x}{2x^{2}-x-1}
|
inverse f(x)=2x^2-6x+13
|
inverse\:f(x)=2x^{2}-6x+13
|
inverse 4x-4
|
inverse\:4x-4
|
inverse f(x)=(4x)/(2x+1)
|
inverse\:f(x)=\frac{4x}{2x+1}
|
inverse 3x^2-2x+1
|
inverse\:3x^{2}-2x+1
|
inverse f(x)=-1/4 x+6
|
inverse\:f(x)=-\frac{1}{4}x+6
|
inverse 8x-3
|
inverse\:8x-3
|
inverse 4x-12
|
inverse\:4x-12
|
inverse (x^2+6x)^{1/2}
|
inverse\:(x^{2}+6x)^{\frac{1}{2}}
|
inverse f(x)=((4x+3))/((2x+5))
|
inverse\:f(x)=\frac{(4x+3)}{(2x+5)}
|
inflection points 3x^4-24x^3+30x^2
|
inflection\:points\:3x^{4}-24x^{3}+30x^{2}
|
inverse f(x)=ln((2x)/(sqrt(1-x^2)))
|
inverse\:f(x)=\ln(\frac{2x}{\sqrt{1-x^{2}}})
|
inverse (x^3-27)/(x-3)
|
inverse\:\frac{x^{3}-27}{x-3}
|
inverse y=-3x-4
|
inverse\:y=-3x-4
|
inverse f(x)=\sqrt[3]{9(x-6)}
|
inverse\:f(x)=\sqrt[3]{9(x-6)}
|
inverse f(x)= x/2+6
|
inverse\:f(x)=\frac{x}{2}+6
|
inverse 1.8x+32
|
inverse\:1.8x+32
|
inverse y= 3/x
|
inverse\:y=\frac{3}{x}
|
inverse f(x)=(x+4)/(3-2x)
|
inverse\:f(x)=\frac{x+4}{3-2x}
|
inverse 3/(x-2)
|
inverse\:\frac{3}{x-2}
|
inverse sqrt(5x+10)
|
inverse\:\sqrt{5x+10}
|
inverse f(x)=(sqrt(x))^4
|
inverse\:f(x)=(\sqrt{x})^{4}
|
inverse f(x)=3+sqrt(2x+4)
|
inverse\:f(x)=3+\sqrt{2x+4}
|
inverse f(x)=5x^{1/5}+3
|
inverse\:f(x)=5x^{\frac{1}{5}}+3
|
inverse sqrt(x^2-9)
|
inverse\:\sqrt{x^{2}-9}
|
inverse G
|
inverse\:G
|
inverse f(x)=(4x-7)/(3-x)
|
inverse\:f(x)=\frac{4x-7}{3-x}
|
inverse f(x)=7\sqrt[3]{x+8}
|
inverse\:f(x)=7\sqrt[3]{x+8}
|
inverse f(x)=(7x+1)/(x-3)
|
inverse\:f(x)=\frac{7x+1}{x-3}
|
inverse-x^2-6x-13
|
inverse\:-x^{2}-6x-13
|
inverse f(x)=(1+x)/(9+12x)
|
inverse\:f(x)=\frac{1+x}{9+12x}
|
inverse f(x)= 3/5 x-9
|
inverse\:f(x)=\frac{3}{5}x-9
|
inflection points x^3-5x^2-8x+4
|
inflection\:points\:x^{3}-5x^{2}-8x+4
|