inverse of f(x)=x-6
|
inverse\:f(x)=x-6
|
inverse of f(x)= 6/7 x
|
inverse\:f(x)=\frac{6}{7}x
|
asymptotes of f(x)=(x+6)/(x+4)
|
asymptotes\:f(x)=\frac{x+6}{x+4}
|
domain of f(x)=(3x+1)/x
|
domain\:f(x)=\frac{3x+1}{x}
|
extreme points of x^3-x
|
extreme\:points\:x^{3}-x
|
domain of f(x)=\sqrt[3]{x^2-4}
|
domain\:f(x)=\sqrt[3]{x^{2}-4}
|
midpoint (-7,-8)(-2,6)
|
midpoint\:(-7,-8)(-2,6)
|
critical points of f(x)=sqrt(49-x^2)
|
critical\:points\:f(x)=\sqrt{49-x^{2}}
|
inverse of (I+1)
|
inverse\:(I+1)
|
range of f(x)=4-x^2
|
range\:f(x)=4-x^{2}
|
range of (x^2-5x+6)/(x^2-4x+3)
|
range\:\frac{x^{2}-5x+6}{x^{2}-4x+3}
|
slope of 3x-y=5
|
slope\:3x-y=5
|
inverse of f(x)=x-16
|
inverse\:f(x)=x-16
|
domain of \sqrt[3]{2-sqrt(x)}
|
domain\:\sqrt[3]{2-\sqrt{x}}
|
extreme points of f(x)=-x^2+2x-2
|
extreme\:points\:f(x)=-x^{2}+2x-2
|
amplitude of y=4(csc(x))-3
|
amplitude\:y=4(\csc(x))-3
|
domain of f(x)=3x-9
|
domain\:f(x)=3x-9
|
inverse of g(x)= 4/(x+1)-2
|
inverse\:g(x)=\frac{4}{x+1}-2
|
inverse of 1/8 x-3
|
inverse\:\frac{1}{8}x-3
|
range of 5x-3
|
range\:5x-3
|
asymptotes of f(x)=(x^4)/(x^2+2)
|
asymptotes\:f(x)=\frac{x^{4}}{x^{2}+2}
|
symmetry 2x-x^2+8
|
symmetry\:2x-x^{2}+8
|
range of f(x)= 1/(x^2-4)
|
range\:f(x)=\frac{1}{x^{2}-4}
|
asymptotes of f(x)= 7/(x-2)
|
asymptotes\:f(x)=\frac{7}{x-2}
|
domain of (2x^2-6x+2)/((2x-3)^2)
|
domain\:\frac{2x^{2}-6x+2}{(2x-3)^{2}}
|
distance (-2,4),(4,-6)
|
distance\:(-2,4),(4,-6)
|
perpendicular y= 2/3 x+1,\at (3,-1)
|
perpendicular\:y=\frac{2}{3}x+1,\at\:(3,-1)
|
shift cos(x)-3
|
shift\:\cos(x)-3
|
asymptotes of f(x)=(14)/((x-5)(x+1))
|
asymptotes\:f(x)=\frac{14}{(x-5)(x+1)}
|
inflection points of x^4-4x^3+9
|
inflection\:points\:x^{4}-4x^{3}+9
|
range of f(x)=(1/12)^x
|
range\:f(x)=(\frac{1}{12})^{x}
|
range of f(x)=sqrt(x^2+6x-7)
|
range\:f(x)=\sqrt{x^{2}+6x-7}
|
line (0,0),(2,2)
|
line\:(0,0),(2,2)
|
inverse of f(x)=log_{6}(x^5)
|
inverse\:f(x)=\log_{6}(x^{5})
|
inverse of f(x)= 1/4 x^3
|
inverse\:f(x)=\frac{1}{4}x^{3}
|
range of 2+sqrt(x-1)
|
range\:2+\sqrt{x-1}
|
domain of f(x)=sqrt(2+x)
|
domain\:f(x)=\sqrt{2+x}
|
slope intercept of 4x+4y=-32
|
slope\:intercept\:4x+4y=-32
|
parallel 3+4x=2y-9
|
parallel\:3+4x=2y-9
|
intercepts of f(x)=x^3-9x^2+20x-12
|
intercepts\:f(x)=x^{3}-9x^{2}+20x-12
|
symmetry 2x=-y^2+y^4
|
symmetry\:2x=-y^{2}+y^{4}
|
critical points of f(x)=e^{2x}+e^{-x}
|
critical\:points\:f(x)=e^{2x}+e^{-x}
|
f(x)=x+1/x
|
f(x)=x+\frac{1}{x}
|
domain of (x+6)/(x^2-49x)
|
domain\:\frac{x+6}{x^{2}-49x}
|
distance (6,7),(8,13)
|
distance\:(6,7),(8,13)
|
intercepts of f(x)=x^2-8x+7
|
intercepts\:f(x)=x^{2}-8x+7
|
log_{2}
|
\log_{2}
|
range of sqrt(x/(2-x))
|
range\:\sqrt{\frac{x}{2-x}}
|
asymptotes of (x-5)/(x^2-25)
|
asymptotes\:\frac{x-5}{x^{2}-25}
|
critical points of f(x)=2x^3-3x^2-12x
|
critical\:points\:f(x)=2x^{3}-3x^{2}-12x
|
intercepts of f(x)=-4x+1
|
intercepts\:f(x)=-4x+1
|
domain of g(x)=sqrt(x+5)
|
domain\:g(x)=\sqrt{x+5}
|
asymptotes of f(x)=(x^3-1)/(x^2-36)
|
asymptotes\:f(x)=\frac{x^{3}-1}{x^{2}-36}
|
domain of f(x)=sqrt(4-x)
|
domain\:f(x)=\sqrt{4-x}
|
inverse of f(x)=1+sqrt(3+6x)
|
inverse\:f(x)=1+\sqrt{3+6x}
|
critical points of sqrt(3)cos(x)-sin(x)
|
critical\:points\:\sqrt{3}\cos(x)-\sin(x)
|
asymptotes of f(x)=(4x)/(x-6)
|
asymptotes\:f(x)=\frac{4x}{x-6}
|
range of f(x)=4+(-4x+7)/(x^2+x-2)
|
range\:f(x)=4+\frac{-4x+7}{x^{2}+x-2}
|
range of sqrt(-x^2-6x+12)
|
range\:\sqrt{-x^{2}-6x+12}
|
symmetry-x^2+2x+4
|
symmetry\:-x^{2}+2x+4
|
intercepts of (x^3-x^2-2x)/(x-2)
|
intercepts\:\frac{x^{3}-x^{2}-2x}{x-2}
|
inverse of f(x)=x>= 0
|
inverse\:f(x)=x\ge\:0
|
domain of g(x)=sqrt(x+8)
|
domain\:g(x)=\sqrt{x+8}
|
range of (1/2)^{x-3}
|
range\:(\frac{1}{2})^{x-3}
|
intercepts of f(x)=(4x+20)/(-x^2-5x)
|
intercepts\:f(x)=\frac{4x+20}{-x^{2}-5x}
|
asymptotes of f(x)=(-2x^2)/(x^2-3)
|
asymptotes\:f(x)=\frac{-2x^{2}}{x^{2}-3}
|
inverse of y= 2/3 x-6
|
inverse\:y=\frac{2}{3}x-6
|
extreme points of f(x)=2sin(5x-30)+3
|
extreme\:points\:f(x)=2\sin(5x-30)+3
|
inverse of 9/5 x+32
|
inverse\:\frac{9}{5}x+32
|
domain of f(x)=((x-2))/(x^2-4)
|
domain\:f(x)=\frac{(x-2)}{x^{2}-4}
|
domain of y=sqrt(16-x^2)
|
domain\:y=\sqrt{16-x^{2}}
|
inverse of (x^2-x)^3
|
inverse\:(x^{2}-x)^{3}
|
domain of e^{2x}
|
domain\:e^{2x}
|
asymptotes of f(x)=(3x+1)/(4x^2+1)
|
asymptotes\:f(x)=\frac{3x+1}{4x^{2}+1}
|
domain of 3x^4
|
domain\:3x^{4}
|
3x^2
|
3x^{2}
|
asymptotes of tan^2(x)
|
asymptotes\:\tan^{2}(x)
|
intercepts of 2x^3-x
|
intercepts\:2x^{3}-x
|
domain of f(x)=(x^2)/(x^2+1)
|
domain\:f(x)=\frac{x^{2}}{x^{2}+1}
|
distance (-4,-4)(6,-2)
|
distance\:(-4,-4)(6,-2)
|
range of (5x+1)/7
|
range\:\frac{5x+1}{7}
|
inverse of f(x)=10^{x-3}+1
|
inverse\:f(x)=10^{x-3}+1
|
intercepts of f(x)=y= 2/3 x-5
|
intercepts\:f(x)=y=\frac{2}{3}x-5
|
inflection points of f(x)=4x^3-6x^2+9x-8
|
inflection\:points\:f(x)=4x^{3}-6x^{2}+9x-8
|
asymptotes of y= 6/(3+2x)
|
asymptotes\:y=\frac{6}{3+2x}
|
range of f(x)=2x^3+3
|
range\:f(x)=2x^{3}+3
|
slope intercept of x-15y=-15
|
slope\:intercept\:x-15y=-15
|
sqrt(x-2)
|
\sqrt{x-2}
|
inverse of 1/3
|
inverse\:\frac{1}{3}
|
extreme points of X^3
|
extreme\:points\:X^{3}
|
domain of f(x)=(x-3)/(6x+1)
|
domain\:f(x)=\frac{x-3}{6x+1}
|
asymptotes of f(x)=(-5x^2-10x)/(2x^2-8)
|
asymptotes\:f(x)=\frac{-5x^{2}-10x}{2x^{2}-8}
|
line (-4,3),(0,3)
|
line\:(-4,3),(0,3)
|
inverse of f(x)=(8x^{1/5}+4)^7
|
inverse\:f(x)=(8x^{\frac{1}{5}}+4)^{7}
|
range of (x-2)/(x^2-4)
|
range\:\frac{x-2}{x^{2}-4}
|
domain of g(x)=sqrt(x^2-6x-27)
|
domain\:g(x)=\sqrt{x^{2}-6x-27}
|
x^2+9
|
x^{2}+9
|
inverse of s^3
|
inverse\:s^{3}
|
inverse of f(x)= 3/(x-5)
|
inverse\:f(x)=\frac{3}{x-5}
|
monotone intervals f(x)=4x^3-45x^2+150x
|
monotone\:intervals\:f(x)=4x^{3}-45x^{2}+150x
|